

Augmenting Drug Hunters with Generative Chemistry Models

Nik Stiefl, NIBR

 Summer School on Cheminformatics, Strasbourg, 2022

Drug hunting: How to identify the best candidate from 10⁶⁰/10²³ potential molecules?

On-target activity

Off-target activity

Lipophilicity

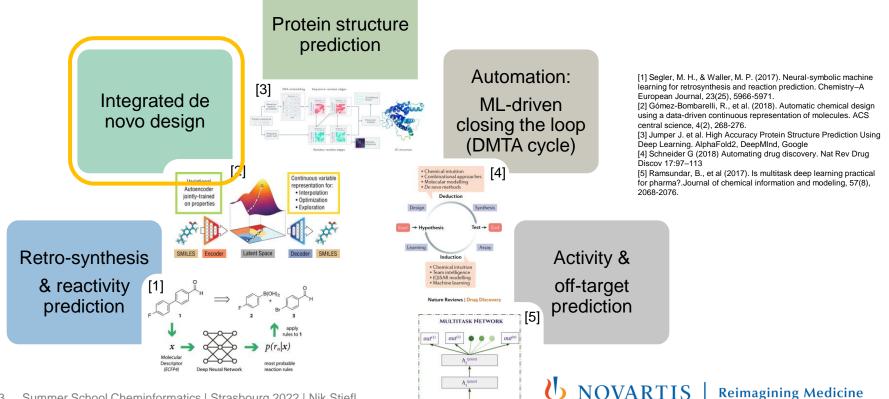
Clearance

Solubility

Permeability

Discontinuous optimization landscape

Low data


availability

Biased sampling

UNOVARTIS Reimagining Medicine

Summer School Cheminformatics | Strasbourg 2022 | Nik Stieff

Leverage ML methods to augment medchem teams

input

Shiny headlines & big hopes

AN AI DESIGNED 30,000 DRUGS IN 21 DAYS AND CAME UP WITH WINNERS

https://www.311institute.com/an-ai-designed-30000-drugs-in-21-days-and-came-up-with-winners/

Al accelerates drug discovery time from 3 years to 21 days

https://www.longevity.technology/ai-platform-acceleratesdrug-discovery-time-from-3-years-to-21-days/

AI MODEL YIELDS NEW DRUG TO OVERCOME ANTIBIOTIC RESISTANCE

https://www.healthcareitnews.com/ai-powered-healthcare/aimodel-yields-new-drug-overcome-antibiotic-resistance

NEWS / 02.20.20

Artificial intelligence yields new antibiotic

By Anne Trafton, MIT News Office

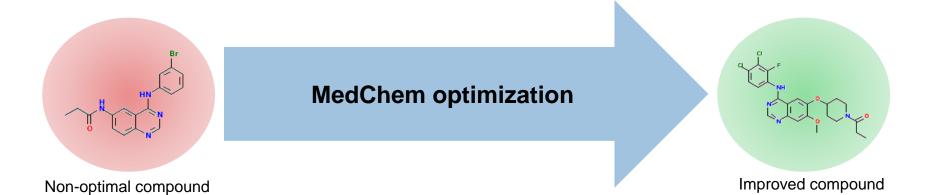
https://www.broadinstitute.org/news/artificial-intelligence-yields-new-antibiotic

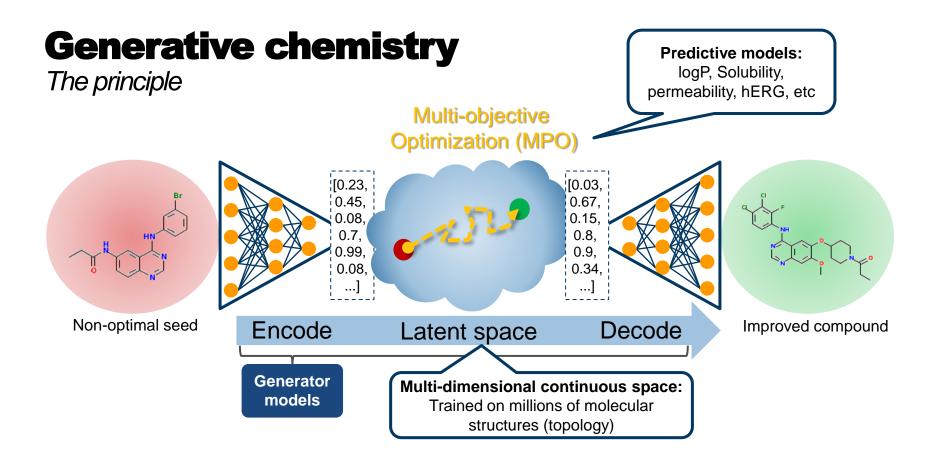
Combining generative artificial intelligence and onchip synthesis for de novo drug design ^[1]

Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence ^[2]

JAEGER – Hunting for Antimalarials with Generative Chemistry^[3]

Grisoni, F., Huisman, B. J., Button, A. L., Moret, M., Atz, K., Merk, D., & Schneider, G. (2021). Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Science advances, 7(24), eabg3338.
 Moret, M., Helmstädter, M., Grisoni, F., Schneider, G., & Merk, D. (2021). Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence. *Angewandte Chemie International Edition*.
 Godinez, W., Ma, E., Chao, A., Pei, L., Skewes-Cox, P., Canham, S., ... & Guiguemde, A. (2021). JAEGER–Hunting for Antimalarials with Generative Chemistry. Chemrxiv, DOI

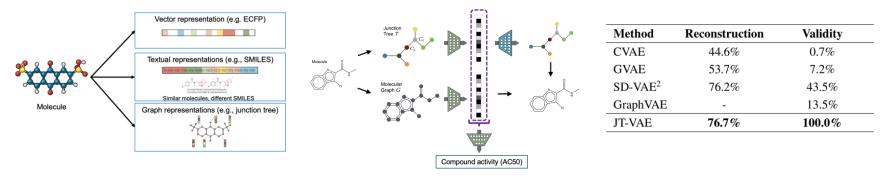

b NOVARTIS


10.33774/chemrxiv-2021-5t5xx

Reimagining Medicine

Generative chemistry

The principle



Reimagining Medicine

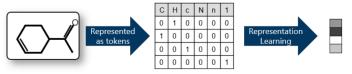
U NOVARTIS |

First, computers need to learn chemistry!

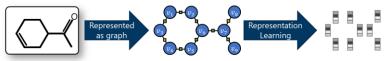
Junction tree variational autoencoder for molecular graph generation. International Conference on Machine Learning, pp. 2323-2332. PMLR, 2018.

U NOVARTIS |

Reimagining Medicine


Why is this important?

- Generative chemistry is futile without generation of valid molecules.
- Enables constraints, such as keeping scaffold fixed.


8 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

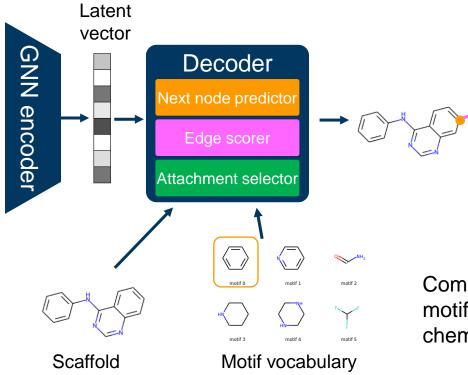
Example generator models

String-based methods (e.g. CDDD¹⁾

Graph-based methods (e.g. CGVAE², MoLeR³)

Conditional generation using [signatures, profiles, sequences] (e.g. pqsar2cpd⁴)

Many other approaches exist, and new ones appear very frequently (often w/ open-source). Major application approaches:


- **Exploration: distribution learning** (reproduce sets of molecules)
- Exploitation: goal-directed generation (search latent space without full sampling)

[1] Winter, R. *et al. Chem. Sci.* 10, 1692–1701 (2019)
[2] Jin, W. *et al. arXiv* (2019). https://arxiv.org/pdf/1802.04364.pdf
[3] Maziarz, K. *et al. arXiv* (2021) https://arxiv.org/pdf/2103.03864.pdf
[4] Pikusa M, *et al. bioarXiv* (2022) https://biorxiv.org/content/10.1101/2021.12.10 .472084v1

9 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

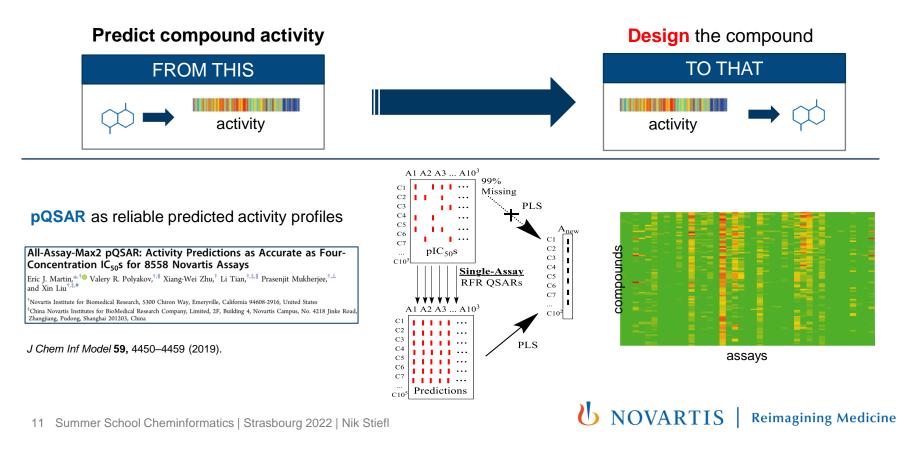
MoLeR: a scaffold aware generator

motif 0

	Gua	camol	Scaffolds		
Method	Score	Quality	Score	Quality	
Best of dataset [9]	0.61	0.77	0.17	0.94	
SMILES LSTM [9]	0.87	0.77	0.24	0.80	
SMILES GA [9]	0.72	0.36	0.45	0.22	
GRAPH MCTS [9]	0.45	0.22	0.20	0.64	
GRAPH GA [9]	0.90	0.40	0.79	0.64	
CDDD + MSO [47]	0.90	0.58	0.92	0.59	
MNCE-RL [48]	0.92	0.54	-	-	
MoLeR + MSO	0.82	0.75	0.93	0.61	

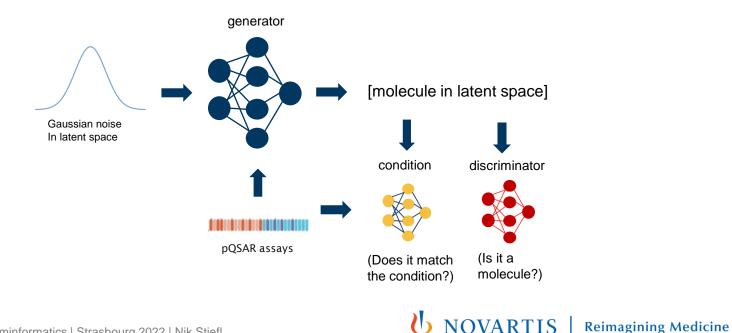
Maziarz, K. et al. arXiv (2021) https://arxiv.org/pdf/2103.03864.pdf

Brown, N. et al. (2019). GuacaMol: benchmarking models for de novo molecular design. *JCIM 59*(3), 1096-1108.


Reimagining Medicine

Combining an atom-by-atom with a motif-bymotif build-up enables high exploration and chemically valid molecules

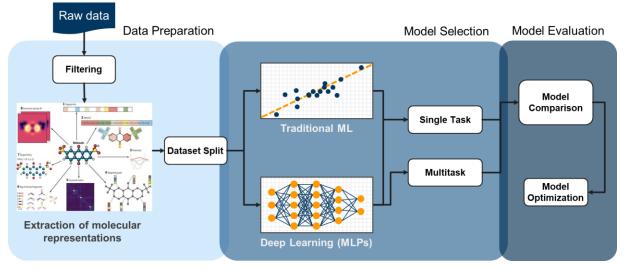
U NOVARTIS


10 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

De-novo generation as reverse phenotypic profiling

pqsar2cpd - zero-sum game

- Conditional Generative Adversarial Networks (Goodfellow et al. 2014) → co-training of chemistry and profile (per project specificity)
- Generator tries to deceive the discriminator by creating samples that are hard to distinguish from real data

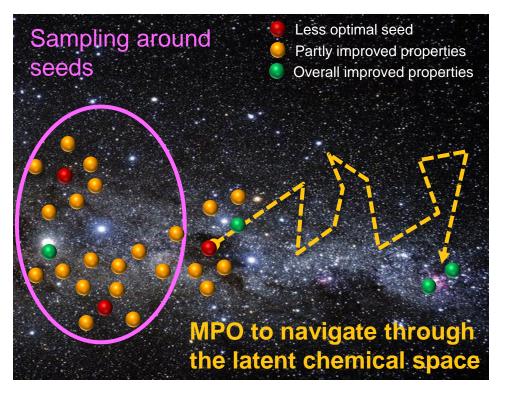


Predictive models for MPO

Standardizing model building and benchmarking – Example: the PREFER framework¹

Simplification of:

- Data preparation
- Comparison of molecular representations
- Comparison of ML models
- Evaluation and optimization of final models


U NOVARTIS | Reimagining Medicine

Molecular representation image source: Sanchez-Lengeling, B., & Aspuru-Guzik, A. Science, 361(6400), 360-365 (2018).

[1] Lanini, J. et al. Manuscript in preparation

13 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

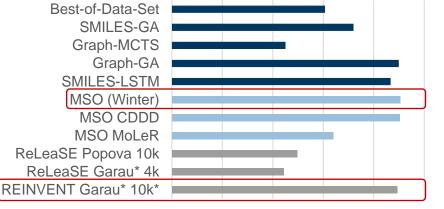
Multi-objective optimization (MPO)

- Pre-defined target property profile guides the search in the latent space
- Predictive models used to determine properties of a new point in the latent space
- Example methods: evolutionary algorithm (MSO), reinforcement learning, etc.

Challenges:

- Reliable predictive models
- Contradicting properties
- Combination of optimization algorithm and generator model

 \bigcup NOVARTIS | Reimagining Medicine

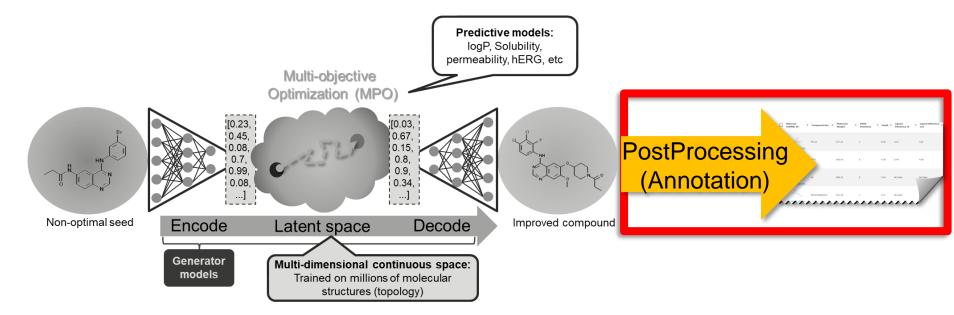

Multi-Objective Optimization Strategies

Using different strategies

Different strategies are needed to explore different optimization task:

- Fast, interactive and local optimization:
 - MSO (molecule swarm optimization)
- Global optimization with strong project-specific focus:
 - Reinforcement Learning-based methods (REINVENT, ReLeaSE)
 - Genetic algorithms (GA)
 - MonteCarlo Tree Search (MCTS)

Guacamol benchmark results

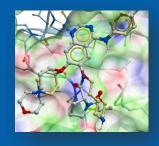

0.00 0.20 0.40 0.60 0.80 1.00 Average score over all tasks

Baselines taken from the Guacamol benchmark: Brown, N., et al.. 59(3), 1096-1108. (2019)

15 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

Generative chemistry in NIBR

Enriching GenChem output with MedChem relevant information



NOVARTIS

Reimagining Medicine

Postprocessing Workflow - Annotation

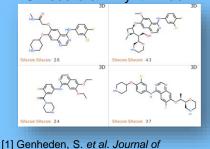
Structure-based or Ligandbased

Latent Space Property Models

	EGFR predictions	solubility predictions	logD predictions
1	0.89	0.9901	1.8
2	0.8402	0.9936	1.9
3	0.8918	0.993	1.9
4	0.8815	0.9945	1.7

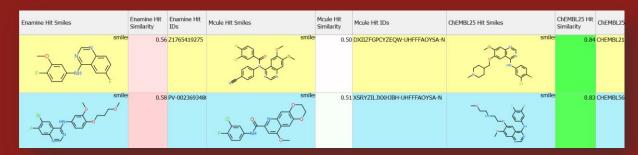
Global Property Models

	NIBR-logP nibr:logP	NIBR-logD nibr:logD(pH=7.4)	Solubility (HT-eq,pH6.8) pH6.8 HT Solubility Classification	BSEP ([3H]taurocholate uptake) BSEF Class ([3H]taurocholate uptake)
1	2.8	1.3	>100 uM	inconclusive
2	3.7	2.3	>100 uM	<= 30 uM
3	3.0	0.7	>100 uM	inconclusive
4	3.5	2.0	>100 uM	inconclusive
5	3.6	1.6	>100 uM	inconclusive
6	3.9	2.1	>100 uM	inconclusive


Substructure Alerts

	SubstructureMatches	Min N O filter	Frac N O	Covalent	SpecialMol	SeverityScore	
4	i no match	no match	0.2	0	0	0	
5	Screeningdeck_2019_halogen_aromatic_count_3_min(3) Screeningdeck_2019_polyhalogenated_aromate_min(1)	no match	0.2	0	0	1	
6	Screeningdeck_2019_phenol_ester_min(1)	no match	0.25	0	0	0	

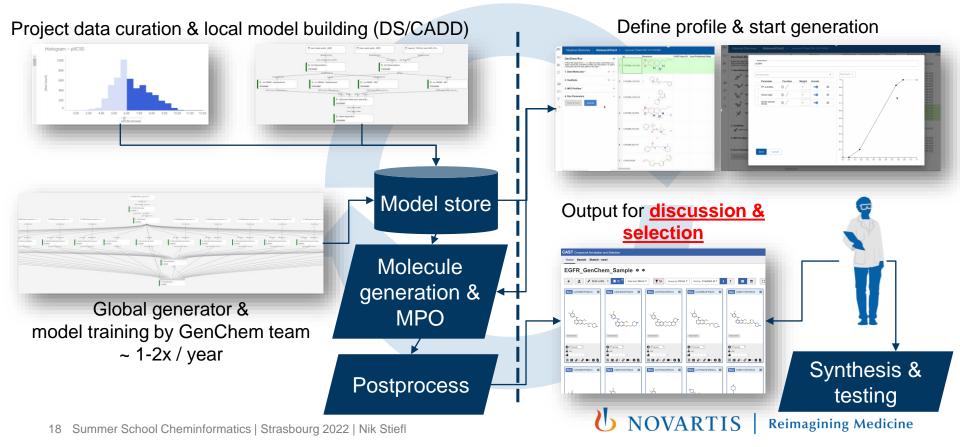
2D based descriptors


	TPSA	ExactMW	NumLipinskiHBA	NumLipinskiHBD	NumRotatableBonds	FractionCSP3	NumHeavyAtoms
1	97	459.1	8	3	7	0.3	32
2	101	517.2	9	3	8	0.4	36
3	89	439.2	8	2	7	0.3	32
4	90	501.2	8	3	7	0.4	35
5	78	460.2	7	2	8	0.4	32

Synthetisability evaluation SA score & AiZynthfinder¹

Cheminformatics 12, 70 (2020).

Similarity searches in public and internal compound DBs*


NOVARTIS

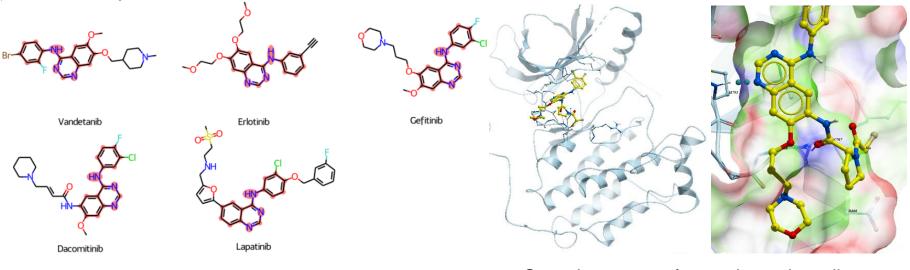
* Internal DBs (not shown): Novartis Corporate Archive & CAST ideas

17 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

Reimagining Medicine

GenChem in Action

Real-world applications


- Public example EGFR
- Observations from *in house* data sets

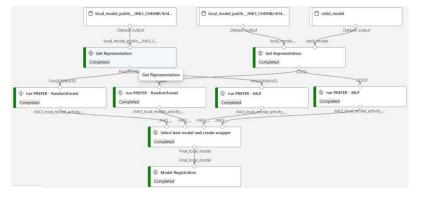
* Sun et al. *JCIM*, **2017**, *9*, 17 * Prykhodko et al. *JCIM*, **2019**, *11*, 74

GenChem application example: EGFR

EGFR is a tyrosine-kinase targeted in Non-Small Cell Lung Cancer

Crystal structure of an amino-quinazoline compound bound to EGFR (PDB: 5y25)

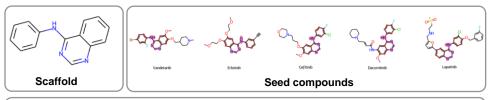
UNOVARTIS | Reimagining Medicine

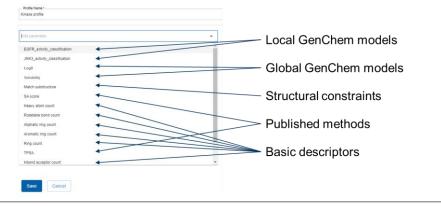

Drugs targeting EGFR with

amino-quinazoline core

GenChem application example: EGFR Set-up

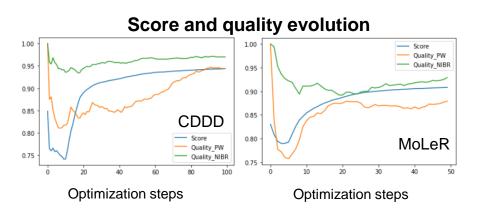
Step 1: local model building


- EGFR model (ExCape dataset¹, #5204 cmpds)
- JNK3 model (ChEMBL dataset, #362 cmpds)


 High-quality EGFR model (AUC 0.92), medium quality JNK3 model (AUC 0.66)

[1] Sun, J., et al. (2017). ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. *Journal of cheminformatics*, *9*(1), 1-9.

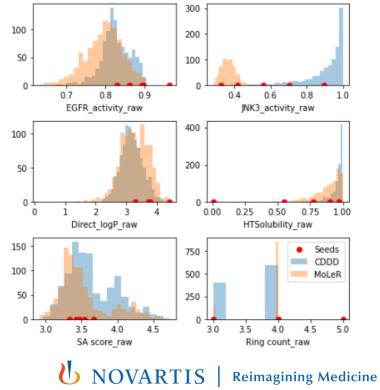
Step 2: MPO and GenChem run set-up



Multi-parameter optimization reflecting MedChem design & prioritization

GenChem application example: EGFR

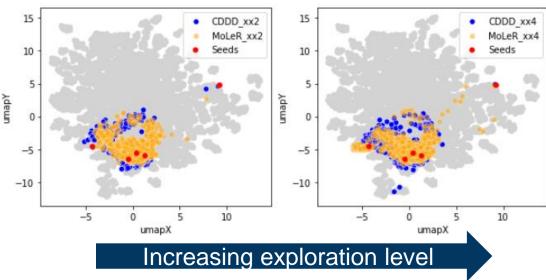
Quantitative results



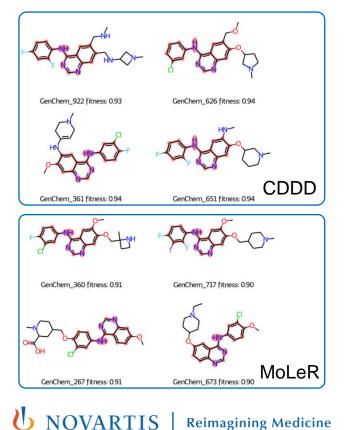
Runtime:

- 5 seeds, 40 particles, 50-100 steps, overall 30'000 new molecules generated in <1h
- 2000 best molecules were kept (1000 per generative model)

24 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl


Property distribution of 2000 best cmpds

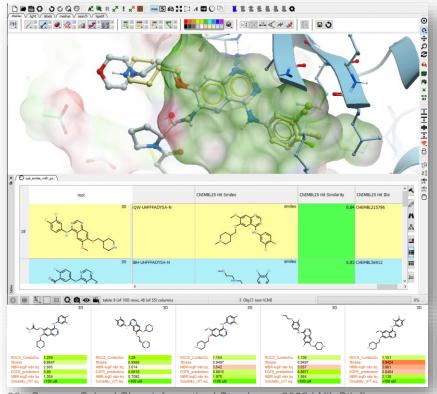
GenChem application example: EGFR


Qualitative results

[1] ExCape dataset, #5204 cmpds

Sun, J. et al. (2017). ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis

EGFR chemical space (in gray) ^[1]



25 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

in chemogenomics. Journal of cheminformatics, 9(1), 1-9.

GenChem application example: EGFR

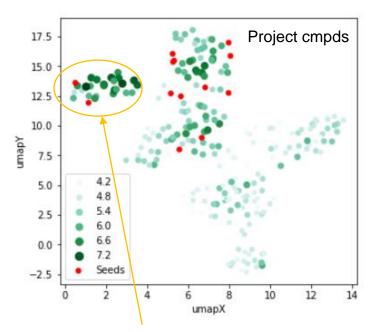
Post-processing outputs multiple ways to analyse results

26 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

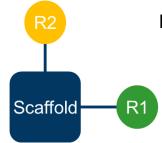
EGFR_GenChe	em_Sample o d	2		
+ 1 Pulk edit	ts 👻 🔲 18 × Data Set: None	e 🕶 💙 18 Group by: None	Sort by: Created at -	t 📰 🔟 🖸
New C23H26CIFN4O3	New C22H24CIFN4O2	New C27H33CIFN5O4	New C23H26CIFN4O3	New C26H31CIFN5O3 =
in the second	in the second	ta taccor	·6	tonon.
GenChem	GenChem	GenChem	GenChem	GenChem
● Proposal	 Proposal ▼ ▲ n/a ★ ★	 ○ Proposal ▼ ▲ n/a ■ ● ● ● ● ● ● ● 	 ○ Proposal ▼ ユ n/a ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 	○ Proposal ▼
New C25H29CIFN5O3	New C26H31CIFN5O4	New C27H33CIFN5O4	New C27H32CIF2N5O4	New C26H31CIFN5O3

MedChem project selection

- Selection criteria: broad coverage of project stages, challenge level, data availability, MedChem team commitment,...
- Goal: Increase the benefit for both -MedChem project teams and GenChem enhancements


Other challenging aspects:

UNOVARTIS | Reimagining Medicine

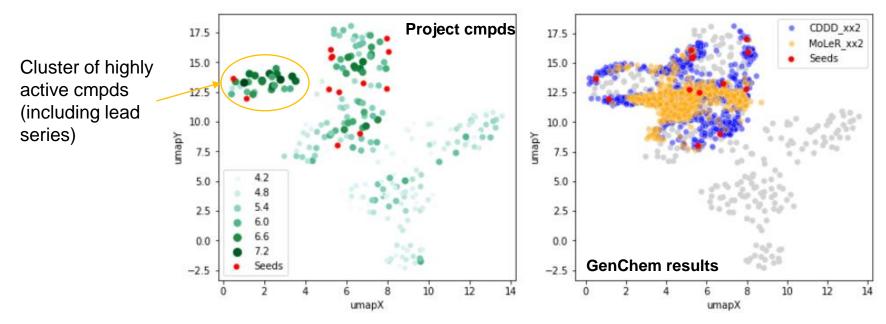

- Scientific
- Social
- Strategic

27 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

Project 1: setup

Cluster of highly active cmpds (including lead series)

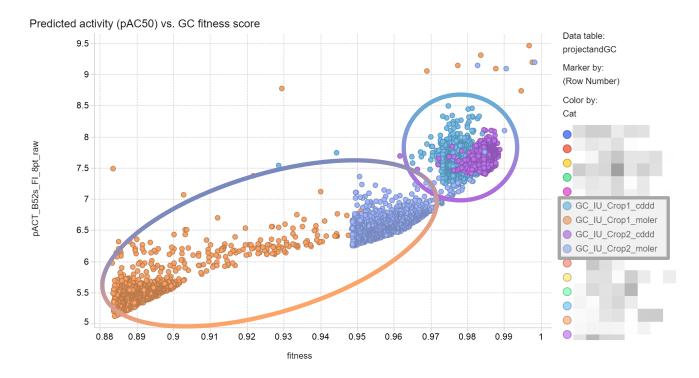
Exploration of 2 exit vectors:


- R2: very sharp SAR, team already identified good vectors here, covered by selecting a diverse set of seeds
- R1: main interest of the team

MPO definition: improve activity and lipophilicity

- Activity:
 - R1 activity regression model
 - Overall activity classification model
- Phys-chem properties:
 - lipophilicity regression model
 - permeability classification model
 - solubility model
- **Chemical attractiveness**: SA score, Heavy atom count, Rotatable bonds

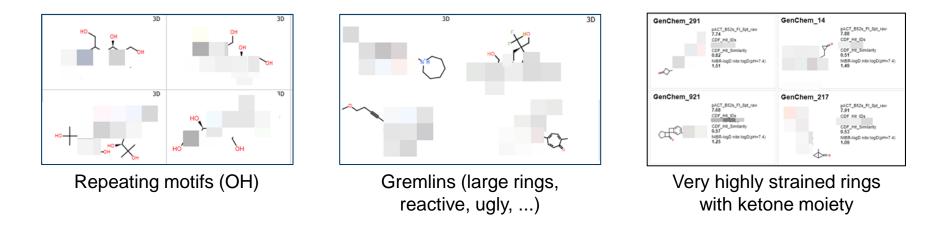
Project 1: Chemical space exploration


U NOVARTIS |

Reimagining Medicine

- Interesting exploitation of GenChem in areas between current series
- Different embeddings & settings provide different exploration profiles

Project 2 – more observations


Higher fitness and activity score != more «realistic» molecules

30 Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

Project 3 – more observations

GenChem creates compounds (sometimes) outside our known chemistry space \rightarrow 0 alert flags (internal SubStructure flags list) but still MedChemist «no-go's»

 \rightarrow Iterative optimization of the GenChem workflow

U NOVARTIS

Reimagining Medicine

GenChem - Take home messages

Manage expectations

Still in evolution

New scientific challenges

Good integration is key

- Do not expect magic but idea augmentation by ML methods
- Expecting surprises depends on the definition of your target property profile
- Generative methods are new and still in the evolution phase, we learn new 'tricks' with every project and every method
- Reliable property models are key in the MPO, uncertainty estimation is highly recommended to mitigate risk
- Diverse generators and optimization methods allow broader and complementary exploration of chemical space
- Seamless integration of GenChem in the daily project work will be key for success of the new method

Acknowledgements

Novartis

- Achim Plueckebaum
- Aleksandr Kolodeev
- Alexander Blaessle
- Alokesh Duttaroy
- Angela Mackay
- Ansgar Schuffenhauer
- Betrand Bodson
- Bulent Kiziltan
- Cara Brocklehurst
- Carlotta Caroli
- Chris Ball
- Chris Sarko
- Christian Kolter
- Clayton Springer
- Dave Barkan
- David Dunstan
- Dennis Koester
- Derek Lowe
- Dimitris Agrafiotis
- Eric Ma

33

- Eric Martin
- Erik Anderson
- Finton Sirockin
- Florentina Tofoleanu
- Florian Nigsch

- Gerardo Manfredi
- Gianluca Santarossa
- Gopichand Mukkapati
- Holger Hoefling
- Hubert Misztela
- ID team
- Imtiaz Hossain
- Iya Khalil
- Jacob Gora
- Jane Panteleev
- Jay Bradner
- Jeremy Jenkins
- Jeroen Verheijen
- Jessica Lanini
- Jose Duca
- Jürgen Wagner
- Karin Briner
- Kaspar Zimmermann
- Lee Sargeant
- Loic Giraud
- Lorenzo Romeo
- Marilisa Neri
- Michal Pikusa

٠

Summer School Cheminformatics | Strasbourg 2022 | Nik Stiefl

- Natalie Dales
- Nadine Schneider

- Nicholas Kelley
- Nikolas Fechner
- Nikolaus Stiefl
- Noe Sturm
- Olivier Rene
- Qurrat UI Ain
- Peter Ertl
- Peter Owotoki
- Peter Skewes-Cox
- Peter Speyer
- Rajesh Agrawal
- Riccardo Vianello
- Richard Lewis
- Richard Quinn
- Rishi Gupta
- Rosie Higgins
- Shahram Ebadollahi
- Simona Cotesta
- Srini Rao

٠

٠

- Steffen Renner
- Viktor Hornak
- William Godinez
- Xian Zhang
- Yen Liang Chen

Microsoft Research

- Alex Menezes
- Chris Bishop
- Henry Jackson-Flux
- Ian Kelly
- John Bronskill
- Junaid Bajwa
- Krzysztof Maziarz
- Marc Brockschmidt
- Marwin Segler
- Megan Stanley
- Nadzeya Paleyes
- Pashmina Cameron
- Sasa Juratovic

- ... and everyone else who supported us / contributed in our explorations
- UNOVARTIS | Reimagining Medicine

YXXYXXXXX \mathbf{x} **YXXYXXXXX** YYYYYYYYY LYYLYYLYL YYXYXXYYY **XXXXXXXXXX** \mathbf{x} **YXXYXXXXX** YYXYYXYYY **YXXYXXXXX** \mathbf{Y} **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX** YYXYYXYYY **XXXXXXXXXX TTTTTTTT YXXYXXXXX** YYYYYYYYY **XYXXYXXXX** ŶŶĹŶŶĹŶŶŶ ↓ŶŶĹŶŶĹŶŶŶ ŶŶĹŶŶĹŶĬŢ ↓ŶŶĹŶŶĹŶĹŶ **TTTTTTTT YXXYXXXXX** \mathbf{x} **YXXYXXXXX** \mathbf{x} **YXXYXXXXX** YYXYXXYYY **XXXXXXXXXX** YYXYYXYYY LYYLYYLYL YYXYYXYYY **YXXYXXXXX** \mathbf{X} **XXXXXXXXXX XXXXXXXXXX** YYYYYYYYY

Thank you