

Interpreting neural network models for toxicity prediction by extracting learned chemical features

30/06/2022 Moritz Walter

Strasbourg Summer School in Chemoinformatics 2022

Chemical feature visualisation

- ANN/DNN model: hidden layer neurons learn representation of data suitable to solve supervised task (classification/regression)
- Aim: find chemical features detected in neurons

Chemical feature visualisation

Modelled endpoint: mutagenicity

- ANN/DNN model: hidden layer neurons learn representation of data suitable to solve supervised task (classification/regression)
- Aim: find chemical features detected in neurons

Automatic substructure extraction

- FCA (Formal Concept Analysis) identifies combinations of compounds and FP bits (formal concepts)
- From those chemical substructures are extracted if associated with neuron activation

From substructures to atom attributions

- 1 Determine importance of neuron for individual prediction
 - Integrated gradients (IG) on hidden neurons

Neuron IG attributions:

0.32 - 0.22 - -0.12 - 0.42 - 0.07

Prediction: 0.91

From substructures to atom attributions

2 Map neuron importances onto structure:

- Find most specific matching substructure(s) in trees
- Share attribution between atoms of substructure

Integrated gradients on input features as comparison¹

1 Preuer et al. 2019: Interpretable deep learning in drug discovery

Neural network model

- Dataset on Ames mutagenicity (~8k)
 - Hansen (curated), ISSSTY, ECVAM, CGX, Snyder
- Derek expert system used to label compounds (structural alerts for mutagenicity)
- Model architecture: 1 hidden layer (512 neurons)
- Input: Morgan FP (radius=1, 2048 bits)
- High performance on test set: ACC: 0.91, ROC-AUC: 0.97, Recall: 0.91, Precision: 0.92

Evaluation

- Individual compounds: attribution AUCs for TP compounds
- Alerts: compute average AUCs for compounds matching a given alert

Explanatory performance

	Median AUC	AUC ≥0.8
IG input	0.964	255/306
IG hidden neurons	0.935	227/306

Alert performances

	Median AUC	AUC ≥0.8
IG input	0.894	36/52
IG hidden	0.903	37/52

IG input

Individual compounds

Derek Alert

Arom. nitro

AUC = 1

Contributing to toxic prediction Contributing to non-toxic prediction

Isocyanate

AUC = 1

IG hidden

AUC = 0.83

AUC = 0.5

Individual compounds

Derek Alert

IG input

IG hidden

Quinolone-3-carboxylic acid

AUC = 0.577

AUC = 0.988

Hydroxylated anthraquinone

AUC = 0.8

AUC = 1

Conclusion

- Method to visualize chemical features learned in hidden layers
- Extracted fragments can be used to interpret neural network model
- Method limited by quality of extracted fragments
- Different explanation methods have strengths and weaknesses
- \rightarrow Benchmarking required

Acknowledgement

Prof. Dr. Val Gillet

Dr. Sam Webb

- Determines importance of each input feature for given prediction
- Integration of gradients (of model output wrt feature) along straight path between baseline (bit vector of 0s) and instance

$$a_i(x) = (x_i - x'_i) \int_{a=0}^{1} \frac{\partial F(x' + \alpha \times (x - x'))}{\partial x_i} d\alpha$$

Integral approximated using a sum:

$$a_i(x) \approx (x_i - x'_i) \sum_{k=1}^m \frac{\partial F(x' + \frac{k}{m} \times (x - x'))}{\partial x_i} \times \frac{1}{m}$$

 a_i : attribution for feature i x_i : feature i x'_i : feature i in baseline (0) F: NN model x_i : feature i α : path x' -> x m: number of steps k: current step

Alert performances

Alert	Proportion train set	IG input	IG hidden neurons
Aromatic nitro	0.130	0.983	0.908
Alkylating agent	0.058	0.900	0.918
PAHs	0.043	0.764	0.540
Epoxide	0.033	0.974	0.912
N-Nitroso	0.029	0.980	0.950
Isocyanate	0.002	1	0.5
Aromatic nitroso	0.007	1	0.711
Hydrox. anthraquinone	0.007	0.63	0.758
Quinolone-3-carboxylic acid	0.003	0.674	0.992

Negative prediction

Taken from model trained on experimental Ames labels Prediction: 0.41 Label: negative

17