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Sources for small-molecule drugs (1981-2019) 

N natural product
ND natural product derivative (usually semi-synthetic)
S synthetic drug
S* synthetic drug with natural product pharmacophore
/NM mimic of natural product

More than half of all modern small-molecule 
drugs are linked to natural products. 

However, a closer look reveals that many of 
these compounds either are of high 

molecular weight (typically peptides) or 
members of few prominent scaffolds 
(e.g. steroids or macrolides such as 

rapamycin analogs)
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• Plants can’t run away! They need to protect themselves from fungal infections, caterpillars, sheep, 
cattle, etc. 
à They require substances that trigger a biological response in the target organism: bitter, hot or 
toxic
•Natural products have been undergoing optimization throughout the course of evolution
à Wide range of biological activities in different organisms 
à “Privileged scaffolds”
à Higher hit rates in biological assays than traditional synthetic libraries

• Protein structures from different organisms are often similar 
à what works in plants may also trigger biological effects in, e.g., humans
◦ On the contrary: huge differences in ADME between species

Bioactivity of natural products
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paclitaxel

• Enormous physicochemical and structural diversity
• In part high molecular complexity:

◦ Higher molecular weight
◦ High 3D shape complexity; fewer planar fragments
◦ High number of sp3-hybridized carbon atoms, 

including also bridgehead atoms
◦ More complex and diverse ring systems
◦ Sugar moieties

Hallmarks of natural products
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• Limited availability/costs of materials for testing
• Difficulties in harvesting, transport (also w.r.t. import and export of natural products), isolation, 

testing and synthesis

• Problems related to decomposition, aggregation, precipitation and reactivity: 
high false-positive hit rates in biological assays
• Computational methods:

◦ In part high molecular complexity and flexibility
◦ 3D in silico approaches depend on molecular structures with correct stereochemistry
◦ Many computational methods have been designed for synthetic drug-like molecules rather than 

natural products. Modifications for use with natural products may be required

Challenges in natural products drug discovery
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As of today, the PubChem Bioassay database lists “conclusive” testing results for 
quercetin for 427 proteins, with quercetin reported as active on 268 of these proteins

(and most of these proteins being of pharmaceutical relevance)

Is quercetin a “super drug”?
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• Retrieval, organization, curation and management of 
chemical information

• Visualization and analysis
• Natural product dereplication
• Molecular property prediction
• Virtual screening: identification of bioactive natural products 

and promising species
• Prediction of the bioactivity spectra and, hence, the 

biomacromolecular targets of natural products

• Prediction of ADME properties and toxicity of natural products
• Design of nature-inspired compounds
• NP-likeness assessment

• Identification bioactive natural products (virtual screening)

Cheminformatics in natural product-based drug discovery

Saldívar-González F I et al., Chem Sci 2022, 13, 1526-1546.
Schneider P et al., Chimia 2022, 76, 396.
Chen Y and Kirchmair J, Mol Inf 2020, 39, 2000171.
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Virtual screening is established as an 
important tool in computer-guided natural 
products research

Established virtual screening methods
• 2D and 3D similarity-based approaches
• Reduced graph representations
• Pharmacophore models
• Molecular shape-based approaches
• Ligand docking methods
• Machine learning models

Challenges
• Structural complexity (conformational flexibility; 

stereochemistry)
• Limited quality, coverage and size of bioactivity 

datasets
• Limited availability of protein structural data 

(~2000 with natural products)

Johannes Kirchmair Page 10

Identification bioactive natural products (virtual screening)
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Encyclopedic and general natural products databases

Data source name Scope Number of 
compounds Biological data Free 

use
Bulk data 

access
Chemistry-aware 

web interface

COCONUT All forms of life >400k none yes yes yes

SuperNatural II All forms of life >325k
bioactivity and toxicity 
data

yes no yes

Reaxys All forms of life >260k bioactivity data no yes yes

Dictionary of Natural Products (DNP) All forms of life >230k bioactivity data no yes yes

UNPD All forms of life >229k none yes
no longer 

avail.
no

AntiBase Microorganisms and higher fungi > 43k
bioactivity data (focus on 
antimicrobial activity)

no no yes

CMAUP Plants >47k bioactivity data yes yes yes

NPASS All forms of life ~35k bioactivity data yes no yes

The Natural Products Atlas Bacteria and fungi >32k none yes yes yes

Pye et al. data set
NPs from microorganisms and marine 
life published between 2012 and 2015

> 6k none yes yes no

Natural products included in the 
PubChem Substance Database

All forms of life >3.5k bioactivity data yes yes yes

UEFS Natural Products None specified ~500 none via ZINC via ZINC no

Chen Y. et al., J Chem Inf Model 2017, 57, 2099−2111.
Chen Y. et al., In Progress in the Chemistry of Organic Natural Products 110 (2019): Cheminformatics in Natural Product Research. ISBN 978-3-030-14632-0. Page 1130-Jun-22



NP databases focused on traditional medicines

Data source name Scope Number of 
compounds Biological data Free 

use
Bulk data 

access

Chemistry-
aware web 
interface

TCM database@Taiwan Chinese medicinal herbs >60k bioactivity data yes yes yes

TCMID 2.0 Chinese medicinal herbs >43k bioactivity data yes yes no

YaTCM Chinese medicinal herbs >47k bioactivity data yes no yes

Chem-TCM Chinese medicinal herbs >12k bioactivity data no yes no

HIM Chinese medicinal herbs ~1300
ADME and toxicity 
data

yes via ZINC via ZINC

HIT Chinese medicinal herbs ~530 bioactivity data yes via ZINC via ZINC

IMPPAT Indian medicinal herbs >9500 bioactivity data yes no yes
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NP Databases focused on a 
specific habitat or geographical region

Data source name Scope Number of 
compounds Biological data Free use Bulk data 

access
Chemistry-aware 

web interface

DMNP Marine life
>55k (including NP 

derivatives)
bioactivity data no no yes

MarinLit Marine life >33k bioactivity data no no yes

TIPdb Taiwanese herbs ~9000
bioactivity data (focus on 
anticancer, antiplatelet and 
antituberculosis activity)

yes yes no

NANPDB All forms of life indigenous to North Africa >6800 bioactivity data yes yes yes

AfroDb African medicinal plants ~1000 bioactivity data yes yes no

SANCDB South African plants and marine life >700 none yes yes yes

AfroCancer
African medicinal plants with confirmed 
anticancer, cytotoxic or antiproliferative activity

~400
bioactivity data (focus on 
anticancer activity)

yes yes no

AfroMalariaDB
African plant NPs with confirmed antimalarial or 
antiplasmodial activity

>250
bioactivity data (focus on 
antimalarial activity)

yes yes no

NuBBEDB
NPs from Brazilian plants, fungi, insects, marine 
organisms, and bacteria

>2200
bioactivity data (focus on 
antimicrobial activity)

yes yes yes

BIOFACQUIM
NPs from plants, fungi and propolis isolated and 
characterized in Mexico

>400 bioactivity data yes yes no
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Further NP databases

Data source name Scope Number of compounds Biological data Free use Bulk data 
access

Chemistry-
aware web 
interface

Databases focused on specific organisms

PAMDB Pseudomonas aeruginosa >4300 bioactivity data yes yes yes

StreptomeDB 2.0 Streptomycetes ~4000 bioactivity data yes yes yes

Databases focused on specific biological activities

NPCARE
NPs with measured anticancer activity, 
sourced from plants, marine species and 
microorganisms 

>6500 bioactivity data (focus 
on anticancer activity)

yes yes no
>1500 in bulk download

NPACT
NPs with measured anticancer activity, 
sourced from plants 

>1500
bioactivity data (focus 
on anticancer activity)

yes via ZINC yes

InflamNat
NPs with measured antiinflammatory activity, 
sourced primarily from terrestrial plants

>650
bioactivity data (focus 
on antiinflammatory)

yes yes no

Databases focused on specific natural product classes

Carotenoids Database
Carotenoids extracted from almost 700 source 
organisms

>1100 bioactivity data yes no yes

Page 1430-Jun-22
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Free vs. commercial virtual natural product libraries

• UNPD is one of the largest free sources of 
chemical data on NPs
• Roughly two-thirds of DNP and UNPD 

data overlap

• 70% of the compounds in the DNP can 
be found in at least one free library
• 53% of all compounds contained in free 

libraries are also covered by the DNP

Structures of more than 250k NPs have been deposited to date

Chen Y. et al., J Chem Inf Model 2017, 57, 2099−2111. Page 1529-Jun-22



Readily obtainable NPs and derivatives 

• Significant effort involved in sourcing natural products
• Only approx. 25k (10%) of all known NPs are 

readily obtainable
• At a Morgan2 fingerprint-based Tanimoto coefficient of 

0.7, about 25% of all known NPs are covered by 
obtainable NPs and their analogs

Chen Y. et al., J Chem Inf Model 2017, 57, 2099−2111. Page 1629-Jun-22
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No. readily purchasable 
natural products

Suppliers

>5000 Molport, TimTec, AK Scientific, Tetrahedron Scientific, BOC Sciences, FineTech Industry, Sigma-Aldrich, 
Specs, National Cancer Institute (NCI)

3000–5000
Fluorochem, Nanjing Kaimubo Pharmatech Company, Hong Kong Chemhere, Oxchem Corporation, 
BePharm, Zelinsky Institute, Combi-Blocks, Debye Scientific, Matrix Scientific, WuXi AppTec, Ark Pharm, 
Bide Pharmatech, BioSynth, InterBioScreen, Labseeker, StruChem, Alfa-Aesar

2000–3000
AstaTech, Enamine, Oakwood Chemical, Frontier Scientific Services, Alfa Chemistry, Key Organics, 
Apollo Scientific, W&J PharmaChem, AnalytiCon Discovery, Acros Organics, Pi Chemicals, Syntharise
Chemical

1000–2000
Toronto Research Chemicals, Capot Chemical, Rostar, INDOFINE Chemical Company, Alinda, Pharmeks, 
Innovapharm, Synthon-Lab, Vesino Industrial, Life Chemicals, Bosche Scientific, Chem-Impex 
International, Vitas-M Laboratory, Biopurify Phytochemicals, Otava Chemicals, A2Z Synthesis, Cayman 
Chemical, Accela ChemBio, Molepedia, Curpys Chemicals, ChemDiv, AsisChem

100–1000

Boerchem Pharmatech, AbovChem, Ryan Scientific, Hangzhou Yuhao Chemical Technology, TargetMol, 
APExBIO, Princeton BioMolecular Research, EDASA Scientific, ChemBridge, Maybridge, MolMall, HDH 
Pharma, UORSY, Chemik, Bachem, Creative Peptides, MedChem Express, Aronis, Heteroz, Selleck 
Chemicals, Tocris, Frinton Laboratories, Asinex, Synchem, EndoTherm Life Science Molecules, Coresyn, 
SpiroChem, Advanced ChemBlock

Chen Y. et al., J Chem Inf Model 2017, 57, 2099−2111. Page 17

Natural products readily purchasable from suppliers
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• Use cases:
◦ Profiling of databases (% NPs; NP-likeness)
◦ Identification of genuine NPs in commercial 

compound libraries, which often contain also 
synthetic molecules

◦ Prioritization of compounds for experimental 
testing

◦ Library design
• Data set:

◦ 201 761 unique NPs (multiple free sources)
◦ 201 761 unique synthetic compounds (ZINC)

NP-Scout: development of a method for the 
assessment of natural product-likeness

Chen Y. et al., Biomolecules 2019, 9, 43. Page 1829-Jun-22



• Machine learning approach
◦ Random forest

• Descriptors:
◦ MACCS keys
◦ Morgan2 fingerprints
◦ (MOE 2D descriptors)

NP-Scout: Modelling approach

Test Metric MOE 2D descriptors Morgan2 
fingerprints 
(1024 bits)

MACCS 
keys

NP-Likeness calculator

10-fold cross-validation AUC 0.997 0.997 0.997 /

MCC 0.953 0.959 0.959 /

Holdout data AUC 0.997 0.997 0.997 0.997

MCC 0.954 0.960 0.960 0.959

Chen Y. et al., Biomolecules 2019, 9, 43.
Ertl et al., J Chem Inf Model 2008, 48, 68-74. Page 1929-Jun-22



NP-Scout: Model validation

NP subset of ZINC

Test set Dictionary of Natural Products

ChEMBL database ChEMBL J Nat Prod 
subset

1% of all compounds

Chen Y. et al., Biomolecules 2019, 9, 43. Page 2029-Jun-22



NP-Scout: Similarity maps

voraxapar empagliflozin

Chen Y. et al., Biomolecules 2019, 9, 43.29-Jun-22 Page 21



Any compounds consisting of 
at least 45 heavy atoms 

(631 Da on average)
or macrocyclic with at least 

30 heavy  atoms
(772 Da on average)

Chen Y. et al., J Chem Inf Model 2020, 60, 2858–2875. Page 22

HIV-1 protease Paired box protein Pax-8 
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Target prediction methods based on 
3D molecular shape similarity: How far can we get?

Any compounds consisting of 
15−30 heavy atoms 

(222 to 424 Da on average)
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Target prediction methods based on 3D molecular shape 
similarity: How far can we get?
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Ranking performance

Percentage of queries for which the target of interest (out of 3642 proteins) was assigned ranks better than or equal to 
the ranks indicated on the y-axis (“rank order distribution”) for all queries.

Chen Y. et al., J Chem Inf Model 2020, 60, 2858–2875.29-Jun-22
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Ranks assigned with the TanimotoCombo score to the target 
of interest for the 280 complex small-molecule queries

Chen Y. et al., J Chem Inf Model 2020, 60, 2858–2875.29-Jun-22
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Performance as a function of molecular similarity

Chen Y. et al., J Chem Inf Model 2020, 60, 2858–2875.

Success rate = fraction of complex small molecule queries ranked among the top-k positions

29-Jun-22



• Method ranked the targets of roughly one-third of the 280 complex 
small-molecules among the top-5 positions of a list of 3642 proteins

• Methods based on 3D molecular shape comparison hold promise to 
identify distant similarity

• ROCS produces “tidy” overlays that help researchers to judge the 
plausibility of individual predictions à even bad matches can be 
valuable information (indication of novelty, etc.)

• Final prediction relies on a single data point for which validity can be 
checked individually à
working with noisy data less problematic

• Even these methods are challenged by macrocyclic compounds and 
natural products (the available data are clearly limited)

• These and other target prediction methods should always be 
worth a try!

Lessons learned on in silico target prediction

Chen Y. et al., J Chem Inf Model 2020, 60, 2858–2875. Page 2729-Jun-22

Table 5. Examples of CSMs for Which Their Targets Were Successfully Identified by One at Least One Score While Others
Failed

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00161
J. Chem. Inf. Model. 2020, 60, 2858−2875

2868

query molecule
aligned, nearest reference molecule



n The vast majority of small-molecule 
drugs (>90%) contain at least one 
ring system, regardless of whether 
they are of natural or synthetic 
origin or not1

n Ring systems form the structural 
core of most molecules and 
determine their shape and 
conformational flexibility, as well as 
the orientation of substituents2
à they are often essential to

biological activity3

28

Bioactive ring systems

Most common bioactive rings.3 The preferred target class: GPCRs, kinases, proteases, other 
enzymes, nuclear receptors, ion channels, epigenetic targets, other targets, multiple targets.

1. R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem., 2014, 57, 5845–5859.
2. P. Ertl, S. Jelfs, J. Mühlbacher, A. Schuffenhauer and P. Selzer, J. Med. Chem., 2006, 49, 4568–4573.
3. P. Ertl, J. Chem. Inf. Model., 2022, 62, 2164-2170.
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n Lee and Schneider in 20011

◦ 10,495 NPs 
◦ 17% of these ring systems are represented in a compound collection of world 

trade drugs
n Ertl and Schuffenhauer in 20082

◦ 113,664 unique molecules extracted from the Dictionary of Natural Products3

◦ NP ring systems form a highly diverse, feature-rich pool of structural templates 
for library and compound design

n Limitations of previous studies
◦ Known NP space is expanding quickly à over 250,000 known NPs4

◦ Largely disregard key molecular properties related to stereochemistry, 3D shape 
and electrostatics

n Our aim: most accurate statistics on the ring systems from known natural products

29

Cheminformatics studies on natural product ring systems

1. M. L. Lee and G. Schneider, J. Comb. Chem., 2001, 3, 284–289.
2. P. Ertl and A. Schuffenhauer, in Natural Compounds as Drugs, eds. F. Petersen and R. Amstutz, Birkhäuser, Basel, 1st edn., 2008, vol. 66, pp. 217–235.
3. Dictionary of Natural Products, https://dnp.chemnetbase.com
4. Y. Chen, C. de Bruyn Kops and J. Kirchmair, J. Chem. Inf. Model., 2017, 57, 2099–2111.
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n Natural products (NPs)
◦ Curated from the Collection of Open Natural Products (COCONUT) database1

◦ Remove data sources that contains non-neglectable portion of synthetic compounds
- Indicated in original databases’ publications and websites
- Visual inspection of compounds included in the individual data sets especially those flagged by 

NP-Scout2 as being likely of synthetic origin
- Targeted searches for molecules with substructures characteristic to synthetic compounds: 

polyhalogenated alkyl chains, sulfonamides and thioureas
◦ Extracted subsets of NPs from plants, bacteria, fungi and marine life

n Synthetic compounds (SCs)
◦ Curated from “in stock” subset of the ZINC20 database3

◦ Remove overlaps with “biogenic” subset
◦ Remove overlap with the complete COCONUT database

n Approved drugs
◦ “Approved” subset of DrugBank4

30

Data sets

1. M. Sorokina, P. Merseburger, K. Rajan, M. A. Yirik and C. Steinbeck, J. Cheminform., 2021, 13, 2.
2. Y. Chen, C. Stork, S. Hirte and J. Kirchmair, Biomolecules, 2019, 9, 43.
3. J. J. Irwin, K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, et al., J. Chem. Inf. Model., 2020, 60, 6065–6073.
4. D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu,et.al.et al, Nucleic Acids Res., 2018, 46, D1074–D1082.
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n Ring system extraction: all atoms forming one or more rings (i.e., including fused and spiro rings), plus 
any proximate exocyclic atom connected to the ring atom via any bond other than a single bond

n Stereochemical information is often incomplete in the databases (and sometimes even wrong): New 
approach to maximize the use of the available stereochemical information was deployed

n https://github.com/anya-chen/RingSystems

31

Methods
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Chen Y et al. Nat Prod Rep 2022, DOI 10.1039/d2np00001f

…when considering stereochemical
information: evidence-based logic

(R)

O

O

OH

O

O
OH

HO

(S)

O

O

OH

O

O
OH

HO O

O

OH

O

O
OH

HO

(R)-(+)-Usnic acid (S)-(-)-Usnic acid Usnic acid

(R)

O

O

OH

O

O
OH

HO

(S)

O

O

OH

O

O
OH

HO O

O

OH

O

O
OH

HO

(R)-(+)-Usnic acid (S)-(-)-Usnic acid Usnic acid

…when disregarding
stereochemical information

29-Jun-22



32

Diversity of ring systems

No. unique compounds No. unique ring systems No. compounds/no. ring systems

When considering stereochemical information

Natural products 269 226 38 662 6.96
Synthetic compounds 8 790 153 53 229 165.14

Approved drugs 2 238 602 3.72

When disregarding stereochemical information

Natural products 246 320 31 003 7.95

Synthetic compounds 6 312 695 30 265 207.41

Approved drugs 2225 596 3.73

Chen Y et al. Nat Prod Rep 2022, DOI 10.1039/d2np00001f30-Jun-22
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Most frequent ring systems
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rank 1:
77,523 (28.79%)

rank 2:
49,694 (18.46%)

rank 3:
9,983 (3.71%)

rank 4:
8,237 (3.06%)

rank 5:
6,974 (2.59%)

rank 6:
5,484 (2.04%)

rank 7:
5,133 (1.91%)

rank 8:
4,429 (1.65%)

rank 9:
4,232 (1.57%)

rank 10:
4,031 (1.50%)

rank 11:
3,369 (1.25%)

rank 12:
3,362 (1.25%)

rank 13:
3,244 (1.20%)

rank 14:
3,085 (1.15%)

rank 15:
2,363 (0.88%)

rank 16:
2,341 (0.87%)

rank 17:
2,302 (0.86%)

rank 18:
2,247 (0.83%)

rank 19:
2,130 (0.79%)

rank 20:
2,057 (0.76%)

rank 22:
1,687 (0.63%)

rank 23:
1,644 (0.61%)

rank 21:
2,001 (0.74%)

rank 24:
1,628 (0.60%)

rank 25:
1,322 (0.49%)

rank 26:
1,302 (0.48%)

rank 27:
1,220 (0.45%)

rank 28:
1,171 (0.43%)

rank 29:
1,131 (0.42%)

rank 30:
992 (0.37%)

rank 7:
2.05%

ursolic acid
7 tetrahedral atoms
105 stereoisomers recorded in databases

Chen Y et al. Nat Prod Rep 2022, DOI 10.1039/d2np00001f29-Jun-22

The 30 most frequent ring systems in NPs
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Most frequent ring systems
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rank 27:
1,220 (0.45%)
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The 30 most frequent ring systems in NPs The 30 most frequent stereoisomers 

Chen Y et al. Nat Prod Rep 2022, DOI 10.1039/d2np00001f29-Jun-22



n Of the 602 ring systems present in the approved drugs, 426 (71%) are present in 
natural products

n Only about 2% of the ring systems observed in natural products are represented in the 
approved drugs
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Natural product ring systems in approved drugs

The 30 most frequent ring systems present in approved drugs 
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n The NP ring systems populate a 
wider chemical space than those 
derived from SCs

n The area most densely populated 
with NP and SC ring systems alike 
is also the one that is of primary 
relevance to small-molecule drug 
discovery
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Physicochemical properties
Natural Products
Synthetic Compounds
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ET_combo = 1.60

n ~15% of NP ring systems represented by identical or closely related ring systems in the 
SC data set

n ~50% of NP ring systems (~13,500) “covered” by a ring system of the SC data set

37

3D shape and electrostatic properties of ring systems

ET_combo = 1.26

ET_combo = 1.44 ET_combo = 1.84

The maximum pairwise similarities calculated for 
each NP ring system and its nearest neighbor in the 

set of ring systems derived from the SC data set.

Alignments with different ET_combo scores
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n Structures of NP ring systems are much more 
diverse than those of ring systems observed in 
synthetic compounds

n Only about 2% of the NP ring systems are 
observed in approved drugs, leaving a huge 
number of potential ring systems to be explored 
in small-molecule drug discovery

n Approximately half of the NP ring systems are 
represented by ring systems in synthetic 
compound with closely related 3D shape and 
electrostatic properties
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Summary

Ring systems in natural products: structural
diversity, physicochemical properties, and
coverage by synthetic compounds†

Ya Chen, *a Cara Rosenkranz,b Steffen Hirte ac and Johannes Kirchmair a

Covering: up to 2021

The structural core of most small-molecule drugs is formed by a ring system, often derived from natural

products. However, despite the importance of natural product ring systems in bioactive small molecules,

there is still a lack of a comprehensive overview and understanding of natural product ring systems and

how their full potential can be harnessed in drug discovery and related fields. Herein, we present

a comprehensive cheminformatic analysis of the structural and physicochemical properties of 38 662

natural product ring systems, and the coverage of natural product ring systems by readily purchasable,

synthetic compounds that are commonly explored in virtual screening and high-throughput screening.

The analysis stands out by the use of comprehensive, curated data sets, the careful consideration of

stereochemical information, and a robust analysis of the 3D molecular shape and electrostatic properties

of ring systems. Among the key findings of this study are the facts that only about 2% of the ring systems

observed in NPs are present in approved drugs but that approximately one in two NP ring systems are

represented by ring systems with identical or related 3D shape and electrostatic properties in

compounds that are typically used in (high-throughput) screening.

1. Introduction
Natural products (NPs) have a long record of use in traditional
medicines. They also remain one of the most prolic sources of
inspiration for modern small-molecule drug discovery.1,2

According to the latest survey of Newman and Cragg on the
origin of approved drugs,3 68% of all small-molecule drugs
approved between 1981 and 2019 are NPs, NP derivatives, NP
mimics, or structures containing NP pharmacophores.

NPs are, on average, heavier and more hydrophobic than
synthetic compounds explored in the context of drug
discovery.4–6 They also feature a higher content of oxygen atoms
and a lower content of nitrogen atoms.4,5 Most outstanding,
however, is their enormous structural diversity and, in part,
high molecular complexity.5–7 In particular the stereochemical
properties of NPs can pose fundamental challenges to organic
chemistry.

Due to the difficulties involved in the sourcing and synthesis
of NPs, the availability of materials for experimental testing is
limited.8 In a recent survey of more than 250 000 known NPs we
found that only approximately 10% are readily obtainable from
commercial and non-commercial sources.9 Experimental high-
throughput screening (HTS) therefore rarely is an option in
NPs research. Instead, a strategy which has been applied very
successfully in the search for novel, bioactive NPs is virtual
screening.10 The power of virtual screening methods lies in their
capacity to cherry-pick the few, most promising compounds for
sourcing and testing, thereby enabling researchers to optimise
the use of the limited experimental resources. Examples include
the identication of inuenza neuraminidase inhibitors with
docking11 and shape-based approaches,12 the discovery of

aDepartment of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry,
Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria. E-mail: ya.
chen@univie.ac.at
bCenter for Bioinformatics (ZBH), Universität Hamburg, 20146 Hamburg, Germany
cVienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences
(PhaNuSpo), University of Vienna, 1090 Vienna, Austria

† Electronic supplementary information (ESI) available: Details on the
computational methods and how to access the source code; Table S1, reporting
the full names of the data sources of the COCONUT database; Table S2,
reporting the numbers and percentages of NP ring systems that are matched by
a ring system in the SC data set at different cutoffs of the ET_combo score.
Fig. S1, showing the occurrences (in percent) of the 30 most frequent ring
systems in (a) NPs and (b) SCs when considering stereochemical information;
Fig. S2, showing the 30 most frequent stereoisomers of the pentacyclic
triterpene ranked no. 7 of the NP ring system set when disregarding
stereochemical information; Fig. S3, showing every 500th (a) NP ring system
and (b) SC ring system (stereochemical information considered; singletons
omitted); Fig. S4, showing the 30 most diverse (a) NP ring systems and (b) SC
ring systems (identied by a k-means clustering method implemented using
scikit-learn and RDKit that takes Morgan2 ngerprints with a length of 1024
bits as input; singletons removed prior to clustering); Fig. S5, showing the 35
ring systems recorded for at least 20 times in each of the subsets of NPs from
plants, bacteria, fungi and marine life. See https://doi.org/10.1039/d2np00001f
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