

Chemoinformatics in Natural Product-Based Drug Discovery Johannes Kirchmair

Slides available upon request and from:

29-Jun-22 Johannes Kirchmair

Sources for small-molecule drugs (1981-2019)

 More than half of all modern small-molecule drugs are linked to natural products.
 However, a closer look reveals that many of these compounds either are of high molecular weight (typically peptides) or members of few prominent scaffolds (e.g. steroids or macrolides such as rapamycin analogs)

- N natural product
- ND natural product derivative (usually semi-synthetic)
- S synthetic drug
- S* synthetic drug with natural product pharmacophore /NM mimic of natural product

Bioactivity of natural products

- **Plants can't run away!** They need to protect themselves from fungal infections, caterpillars, sheep, cattle, etc.
 - → They require substances that trigger a biological response in the target organism: **bitter, hot or toxic**
- Natural products have been undergoing optimization throughout the course of evolution
 - ightarrow Wide range of biological activities in different organisms
 - \rightarrow "Privileged scaffolds"
 - \rightarrow Higher hit rates in biological assays than traditional synthetic libraries
- Protein structures from different organisms are often similar
 - \rightarrow what works in plants may also trigger biological effects in, e.g., humans
 - On the contrary: huge differences in ADME between species

Hallmarks of natural products

paclitaxel

H₂C

HN

- Enormous physicochemical and structural diversity
- In part high molecular complexity:
 - Higher molecular weight
 - High 3D shape complexity; fewer planar fragments
 - High number of sp³-hybridized carbon atoms, including also bridgehead atoms
 - More complex and diverse ring systems
 - Sugar moieties

Challenges in natural products drug discovery

- Limited availability/costs of materials for testing
- Difficulties in harvesting, transport (also w.r.t. import and export of natural products), isolation, testing and synthesis
- Problems related to decomposition, aggregation, precipitation and reactivity: high false-positive hit rates in biological assays
- Computational methods:
 - In part high molecular complexity and flexibility
 - 3D in silico approaches depend on molecular structures with correct stereochemistry
 - Many computational methods have been designed for synthetic drug-like molecules rather than natural products. Modifications for use with natural products may be required

Is quercetin a "super drug"?

As of today, the PubChem Bioassay database lists "conclusive" testing results for quercetin for 427 proteins, with quercetin reported as active on 268 of these proteins

(and most of these proteins being of pharmaceutical relevance)

universität Cheminformatics in natural product-based drug discoverymelecular nformatics

- Retrieval, organization, curation and management of chemical information
- Visualization and analysis

wien

- Natural product dereplication
- Molecular property prediction
- Virtual screening: identification of bioactive natural products and promising **species**
- Prediction of the **bioactivity spectra** and, hence, the biomacromolecular targets of natural products
- Prediction of ADME properties and toxicity of natural products
- **Design** of nature-inspired compounds
- NP-likeness assessment
- Identification bioactive natural products (virtual screening)

Saldívar-González F I et al., Chem Sci 2022, 13, 1526-1546. Schneider P et al., Chimia 2022, 76, 396. 29-Jun-22 Chen Y and Kirchmair J, Mol Inf 2020, 39, 2000171.

Review

www.molinf.com

molecular informatics

DOI: 10.1002/minf.202000171

Cheminformatics in Natural Product-based Drug Discovery

Ya Chen^[a] and Johannes Kirchmair^{*[a, b]}

wien **Identification bioactive natural products (virtual screening)**

Virtual screening is established as an important tool in computer-guided natural products research

Established virtual screening methods

- 2D and 3D similarity-based approaches
- Reduced graph representations
- Pharmacophore models
- Molecular shape-based approaches
- Ligand docking methods
- Machine learning models

Challenges

- Structural complexity (conformational flexibility; stereochemistry)
- Limited quality, coverage and size of bioactivity datasets
- Limited availability of protein structural data (~2000 with natural products)

Encyclopedic and general natural products databases

Data source name	Scope	Number of compounds	Biological data	Free use	Bulk data access	Chemistry-aware web interface
COCONUT	All forms of life	>400k	none	yes	yes	yes
SuperNatural II	All forms of life	>325k	bioactivity and toxicity data	yes	no	yes
Reaxys	All forms of life	>260k	bioactivity data	no	yes	yes
Dictionary of Natural Products (DNP)	All forms of life	>230k	bioactivity data	no	yes	yes
UNPD	All forms of life	>229k	none	yes	no longer avail.	no
AntiBase	Microorganisms and higher fungi	> 43k	bioactivity data (focus on antimicrobial activity)	no	no	yes
CMAUP	Plants	>47k	bioactivity data	yes	yes	yes
NPASS	All forms of life	~35k	bioactivity data	yes	no	yes
The Natural Products Atlas	Bacteria and fungi	>32k	none	yes	yes	yes
Pye et al. data set	NPs from microorganisms and marine life published between 2012 and 2015	> 6k	none	yes	yes	no
Natural products included in the PubChem Substance Database	All forms of life	>3.5k	bioactivity data	yes	yes	yes
UEFS Natural Products	None specified	~500	none	via ZINC	via ZINC	no

Chen Y. et al., J Chem Inf Model 2017, 57, 2099–2111.

30-Jun-22 Chen Y. et al., In *Progress in the Chemistry of Organic Natural Products 110* (2019): Cheminformatics in Natural Product Research. ISBN 978-3-030-14632-0.

NP databases focused on traditional medicines

Data source name	Scope	Number of compounds	Biological data	Free use	Bulk data access	Chemistry- aware web interface
TCM database@Taiwan	Chinese medicinal herbs	>60k	bioactivity data	yes	yes	yes
TCMID 2.0	Chinese medicinal herbs	>43k	bioactivity data	yes	yes	no
YaTCM	Chinese medicinal herbs	>47k	bioactivity data	yes	no	yes
Chem-TCM	Chinese medicinal herbs	>12k	bioactivity data	no	yes	no
нім	Chinese medicinal herbs	~1300	ADME and toxicity data	yes	via ZINC	via ZINC
ніт	Chinese medicinal herbs	~530	bioactivity data	yes	via ZINC	via ZINC
IMPPAT	Indian medicinal herbs	>9500	bioactivity data	yes	no	yes

NP Databases focused on a specific habitat or geographical region

Data source name	Scope	Number of compounds	Biological data	Free use	Bulk data access	Chemistry-aware web interface
DMNP	Marine life	>55k (including NP derivatives)	bioactivity data	no	no	yes
MarinLit	Marine life	>33k	bioactivity data	no	no	yes
TIPdb	Taiwanese herbs	~9000	bioactivity data (focus on anticancer, antiplatelet and antituberculosis activity)	yes	yes	no
NANPDB	All forms of life indigenous to North Africa	>6800	bioactivity data	yes	yes	yes
AfroDb	African medicinal plants	~1000	bioactivity data	yes	yes	no
SANCDB	South African plants and marine life	>700	none	yes	yes	yes
AfroCancer	African medicinal plants with confirmed anticancer, cytotoxic or antiproliferative activity	~400	bioactivity data (focus on anticancer activity)	yes	yes	no
AfroMalariaDB	African plant NPs with confirmed antimalarial or antiplasmodial activity	>250	bioactivity data (focus on antimalarial activity)	yes	yes	no
NuBBE _{DB}	NPs from Brazilian plants, fungi, insects, marine organisms, and bacteria	>2200	bioactivity data (focus on antimicrobial activity)	yes	yes	yes
BIOFACQUIM	NPs from plants, fungi and propolis isolated and characterized in Mexico	>400	bioactivity data	yes	yes	no

Further NP databases

Data source name	Scope	Number of compounds	Biological data	Free use	Bulk data access	Chemistry- aware web interface	
Databases focused on spe	cific organisms						
PAMDB	Pseudomonas aeruginosa	>4300	bioactivity data	yes	yes	yes	
StreptomeDB 2.0	Streptomycetes	~4000	bioactivity data	yes	yes	yes	
Databases focused on specific biological activities							
	NPs with measured anticancer activity,	>6500) bioactivity data (focus	yes	yes	no	
NPCARE	microorganisms	>1500 in bulk download	on anticancer activity)				
NPACT	NPs with measured anticancer activity, sourced from plants	>1500	bioactivity data (focus on anticancer activity)	yes	via ZINC	yes	
InflamNat	NPs with measured antiinflammatory activity, sourced primarily from terrestrial plants	>650	bioactivity data (focus on antiinflammatory)	yes	yes	no	
Databases focused on specific natural product classes							
Carotenoids Database	Carotenoids extracted from almost 700 source organisms	>1100	bioactivity data	yes	no	yes	

Free vs. commercial virtual natural product libraries

Structures of more than 250k NPs have been deposited to date

- 70% of the compounds in the DNP can be found in at least one free library
- 53% of all compounds contained in free libraries are also covered by the DNP

universität

wien

- 62k 106k 48k
- UNPD is one of the largest free sources of chemical data on NPs
- Roughly two-thirds of DNP and UNPD data overlap

Readily obtainable NPs and derivatives

universität

wień

- Significant effort involved in sourcing natural products
- Only approx. 25k (10%) of all known NPs are readily obtainable
- At a Morgan2 fingerprint-based Tanimoto coefficient of 0.7, about 25% of all known NPs are covered by obtainable NPs and their analogs

universität wien Natural products readily purchasable from suppliers

No. readily purchasable natural products	Suppliers
>5000	Molport, TimTec, AK Scientific, Tetrahedron Scientific, BOC Sciences, FineTech Industry, Sigma-Aldrich, Specs, National Cancer Institute (NCI)
3000–5000	Fluorochem, Nanjing Kaimubo Pharmatech Company, Hong Kong Chemhere, Oxchem Corporation, BePharm, Zelinsky Institute, Combi-Blocks, Debye Scientific, Matrix Scientific, WuXi AppTec, Ark Pharm, Bide Pharmatech, BioSynth, InterBioScreen, Labseeker, StruChem, Alfa-Aesar
2000–3000	AstaTech, Enamine, Oakwood Chemical, Frontier Scientific Services, Alfa Chemistry, Key Organics, Apollo Scientific, W&J PharmaChem, AnalytiCon Discovery, Acros Organics, Pi Chemicals, Syntharise Chemical
1000–2000	Toronto Research Chemicals, Capot Chemical, Rostar, INDOFINE Chemical Company, Alinda, Pharmeks, Innovapharm, Synthon-Lab, Vesino Industrial, Life Chemicals, Bosche Scientific, Chem-Impex International, Vitas-M Laboratory, Biopurify Phytochemicals, Otava Chemicals, A2Z Synthesis, Cayman Chemical, Accela ChemBio, Molepedia, Curpys Chemicals, ChemDiv, AsisChem
100–1000	Boerchem Pharmatech, AbovChem, Ryan Scientific, Hangzhou Yuhao Chemical Technology, TargetMol, APExBIO, Princeton BioMolecular Research, EDASA Scientific, ChemBridge, Maybridge, MolMall, HDH Pharma, UORSY, Chemik, Bachem, Creative Peptides, MedChem Express, Aronis, Heteroz, Selleck Chemicals, Tocris, Frinton Laboratories, Asinex, Synchem, EndoTherm Life Science Molecules, Coresyn, SpiroChem, Advanced ChemBlock

NP-Scout: development of a method for the assessment of natural product-likeness

- Use cases:
 - Profiling of databases (% NPs; NP-likeness)
 - Identification of genuine NPs in commercial compound libraries, which often contain also synthetic molecules
 - Prioritization of compounds for experimental testing
 - Library design
- Data set:
 - 201 761 unique NPs (multiple free sources)
 - 201 761 unique synthetic compounds (ZINC)

NP-Scout: Modelling approach

Machine learning approach
 Random forest

- Descriptors:
 - ° MACCS keys
 - Morgan2 fingerprints
 - (MOE 2D descriptors)

Test	Metric	MOE 2D descriptors	Morgan2 fingerprints (1024 bits)	MACCS keys	NP-Likeness calculator
10-fold cross-validation	AUC	0.997	0.997	0.997	/
	МСС	0.953	0.959	0.959	/
Holdout data	AUC	0.997	0.997	0.997	0.997
	МСС	0.954	0.960	0.960	0.959

NP-Scout: Model validation

29-Jun-22 Chen Y. et al., Biomolecules 2019, 9, 43.

NP-Scout: Similarity maps

UniversitätTarget prediction methods based onWien3D molecular shape similarity: How far can we get?

HIV-1 protease

Paired box protein Pax-8

CHEMBL1864580

CHEMBL1718227

CHEMBL24856

Any compounds consisting of at least 45 heavy atoms (631 Da on average) or macrocyclic with at least 30 heavy atoms (772 Da on average)

Any compounds consisting of 15–30 heavy atoms (222 to 424 Da on average)

Target prediction methods based on 3D molecular shape similarity: How far can we get?

universität wien

Ranking performance

Percentage of queries for which the target of interest (out of 3642 proteins) was assigned ranks better than or equal to the ranks indicated on the *y*-axis ("rank order distribution") for all queries.

Universität Ranks assigned with the TanimotoCombo score to the target wien of interest for the 280 complex small-molecule queries

29-Jun-22

Performance as a function of molecular similarity

Success rate = fraction of complex small molecule queries ranked among the top-k positions

Lessons learned on in silico target prediction

- Method ranked the targets of roughly **one-third of the 280 complex small-molecules among the top-5 positions of a list of 3642 proteins**
- Methods based on 3D molecular shape comparison hold promise to identify distant similarity
- ROCS produces "tidy" overlays that help researchers to judge the plausibility of individual predictions → even bad matches can be valuable information (indication of novelty, etc.)
- Final prediction relies on a single data point for which validity can be checked individually →
 working with noisy data less problematic
- Even these methods are **challenged by macrocyclic compounds and natural products** (the available data are clearly limited)
- These and other target prediction methods should always be worth a try!

query molecule aligned, nearest reference molecule

Bioactive ring systems

- The vast majority of small-molecule drugs (>90%) contain at least one ring system, regardless of whether they are of natural or synthetic origin or not¹
- Ring systems form the structural core of most molecules and determine their shape and conformational flexibility, as well as the orientation of substituents²
 - → they are often essential to biological activity³

Most common bioactive rings.³ The preferred target class: GPCRs, kinases, proteases, other enzymes, nuclear receptors, ion channels, epigenetic targets, other targets, multiple targets.

Cheminformatics studies on natural product ring systems

- Lee and Schneider in 2001¹
 - 10,495 NPs
 - 17% of these ring systems are represented in a compound collection of world trade drugs
- Ertl and Schuffenhauer in 2008²
 - 113,664 unique molecules extracted from the Dictionary of Natural Products³
 - NP ring systems form a highly diverse, feature-rich pool of structural templates for library and compound design
- Limitations of previous studies
 - Known NP space is expanding quickly \rightarrow over 250,000 known NPs⁴
 - Largely disregard key molecular properties related to stereochemistry, 3D shape and electrostatics

Our aim: most accurate statistics on the ring systems from known natural products

- 1. M. L. Lee and G. Schneider, J. Comb. Chem., 2001, 3, 284–289.
- 2. P. Ertl and A. Schuffenhauer, in Natural Compounds as Drugs, eds. F. Petersen and R. Amstutz, Birkhäuser, Basel, 1st edn., 2008, vol. 66, pp. 217–235.
- 29-Jun-22 3. Dictionary of Natural Products, https://dnp.chemnetbase.com
 - 4. Y. Chen, C. de Bruyn Kops and J. Kirchmair, J. Chem. Inf. Model., 2017, 57, 2099–2111.

Data sets

Natural products (NPs)

- Curated from the Collection of Open Natural Products (COCONUT) database¹
- Remove data sources that contains non-neglectable portion of synthetic compounds
 - Indicated in original databases' publications and websites
 - Visual inspection of compounds included in the individual data sets especially those flagged by NP-Scout² as being likely of synthetic origin
 - Targeted searches for molecules with substructures characteristic to synthetic compounds: polyhalogenated alkyl chains, sulfonamides and thioureas
- Extracted subsets of NPs from plants, bacteria, fungi and marine life
- Synthetic compounds (SCs)
 - Curated from "in stock" subset of the ZINC20 database³
 - Remove overlaps with "biogenic" subset
 - Remove overlap with the complete COCONUT database
- Approved drugs
 - "Approved" subset of DrugBank⁴
 - 1. M. Sorokina, P. Merseburger, K. Rajan, M. A. Yirik and C. Steinbeck, J. Cheminform., 2021, 13, 2.
 - 2. Y. Chen, C. Stork, S. Hirte and J. Kirchmair, Biomolecules, 2019, 9, 43.

4. D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, et.al. et al, Nucleic Acids Res., 2018, 46, D1074–D1082.

²⁹⁻Jun-22 3. J. J. Irwin, K. G. Tang, J. Young, C. Dandarchuluun, B. R. Wong, et al., J. Chem. Inf. Model., 2020, 60, 6065–6073.

Methods

- Ring system extraction: all atoms forming one or more rings (i.e., including fused and spiro rings), plus any proximate exocyclic atom connected to the ring atom via any bond other than a single bond
- Stereochemical information is often incomplete in the databases (and sometimes even wrong): New approach to maximize the use of the available stereochemical information was deployed
- https://github.com/anya-chen/RingSystems

Diversity of ring systems

	No. unique compounds	No. unique ring systems	No. compounds/no. ring systems				
When considering stereochemical information							
Natural products	269 226	38 662	6.96				
Synthetic compounds	8 790 153	53 229	165.14				
Approved drugs	2 238	602	3.72				
	When disregard	ng stereochemical information					
Natural products	246 320	31 003	7.95				
Synthetic compounds	6 312 695	30 265	207.41				
Approved drugs	2225	596	3.73				

Most frequent ring systems

rank 7: 2.05%

ursolic acid 7 tetrahedral atoms 105 stereoisomers recorded in databases

The 30 most frequent ring systems in NPs

Most frequent ring systems

The 30 most frequent stereoisomers

The 30 most frequent ring systems in NPs

29-Jun-22 Chen Y et al. Nat Prod Rep 2022, DOI 10.1039/d2np00001f

Natural product ring systems in approved drugs

- Of the 602 ring systems present in the approved drugs, 426 (71%) are present in natural products
- Only about 2% of the ring systems observed in natural products are represented in the approved drugs

The 50 most nequent ring systems present in app

Physicochemical properties

- The NP ring systems populate a wider chemical space than those derived from SCs
- The area most densely populated with NP and SC ring systems alike is also the one that is of primary relevance to small-molecule drug discovery

wien wien

3D shape and electrostatic properties of ring systems

- ~15% of NP ring systems represented by identical or closely related ring systems in the SC data set
- ~50% of NP ring systems (~13,500) "covered" by a ring system of the SC data set

The maximum pairwise similarities calculated for each NP ring system and its nearest neighbor in the set of ring systems derived from the SC data set.

Alignments with different ET_combo scores

Summary

- Structures of NP ring systems are much more diverse than those of ring systems observed in synthetic compounds
- Only about 2% of the NP ring systems are observed in approved drugs, leaving a huge number of potential ring systems to be explored in small-molecule drug discovery
- Approximately half of the NP ring systems are represented by ring systems in synthetic compound with closely related 3D shape and electrostatic properties

Natural Product Reports

 HIGHLIGHT
 View Article Online

 Image: Check for updates
 Ring systems in natural products: structural diversity, physicochemical properties, and coverage by synthetic compounds†

Ya Chen, 📴 *a Cara Rosenkranz, ^b Steffen Hirte 回 ac and Johannes Kirchmair 回 a

Covering: up to 2021

The structural core of most small-molecule drugs is formed by a ring system, often derived from natural products. However, despite the importance of natural product ring systems in bioactive small molecules, there is still a lack of a comprehensive overview and understanding of natural product ring systems and how their full potential can be harnessed in drug discovery and related fields. Herein, we present a comprehensive cheminformatic analysis of the structural and physicochemical properties of 38 662 natural product ring systems, and the coverage of natural product ring systems by readily purchasable, synthetic compounds that are commonly explored in virtual screening and high-throughput screening. The analysis stands out by the use of comprehensive, curated data sets, the careful consideration of stereochemical information, and a robust analysis of the 3D molecular shape and electrostatic properties of ring systems are present in approved drugs but that approximately one into NP ring systems are represented by ring systems with identical or related 3D shape and electrostatic properties in compounds that are typically used in (high-throughput) screening.

Received 4th January 2022 DOI: 10.1039/d2np00001f rsc.li/npr

1. Introduction

Natural products (NPs) have a long record of use in traditional medicines. They also remain one of the most prolific sources of inspiration for modern small-molecule drug discovery.^{1,2}

^bCenter for Bioinformatics (ZBH), Universität Hamburg, 20146 Hamburg, Germany Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria

† Electronic supplementary information (ESI) available: Details on the computational methods and how to access the source code; Table S1, reporting the full names of the data sources of the COCONUT database: Table S2. reporting the numbers and percentages of NP ring systems that are matched by a ring system in the SC data set at different cutoffs of the ET combo score. Fig. S1, showing the occurrences (in percent) of the 30 most frequent ring systems in (a) NPs and (b) SCs when considering stereochemical information; Fig. S2, showing the 30 most frequent stereoisomers of the pentacyclic triterpene ranked no. 7 of the NP ring system set when disregarding stereochemical information; Fig. S3, showing every 500th (a) NP ring system and (b) SC ring system (stereochemical information considered; singletons omitted); Fig. S4, showing the 30 most diverse (a) NP ring systems and (b) SC ring systems (identified by a k-means clustering method implemented using scikit-learn and RDKit that takes Morgan2 fingerprints with a length of 1024 bits as input; singletons removed prior to clustering); Fig. S5, showing the 35 ring systems recorded for at least 20 times in each of the subsets of NPs from plants, bacteria, fungi and marine life. See https://doi.org/10.1039/d2np00001f

According to the latest survey of Newman and Cragg on the origin of approved drugs,³ 68% of all small-molecule drugs approved between 1981 and 2019 are NPs, NP derivatives, NP mimics, or structures containing NP pharmacophores.

NPs are, on average, heavier and more hydrophobic than synthetic compounds explored in the context of drug discovery.⁴⁻⁶ They also feature a higher content of oxygen atoms and a lower content of nitrogen atoms.⁴⁻⁵ Most outstanding, however, is their enormous structural diversity and, in part, high molecular complexity.⁵⁻⁷ In particular the stereochemical properties of NPs can pose fundamental challenges to organic chemistry.

Due to the difficulties involved in the sourcing and synthesis of NPs, the availability of materials for experimental testing is limited.⁸ In a recent survey of more than 250 000 known NPs we found that only approximately 10% are readily obtainable from commercial and non-commercial sources.⁹ Experimental highthroughput screening (HTS) therefore rarely is an option in NPs research. Instead, a strategy which has been applied very successfully in the search for novel, bioactive NPs is virtual screening.¹⁰ The power of virtual screening methods lies in their capacity to cherry-pick the few, most promising compounds for sourcing and testing, thereby enabling researchers to optimise the use of the limited experimental resources. Examples include the identification of influenza neuraminidase inhibitors with docking¹¹ and shape-based approaches,¹² the discovery of

[&]quot;Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria. E-mail: ya. chen@univie.ac.at

NERDD

New E-Resource for Drug Discovery

nerdd.univie.ac.at

Stork et al., Bioinformatics 2019, 36, 1291–1292

