

InvolvD ANR-20-CE23-0023

Towards DAG-based interactive pharmacophore exploration: Application to the BCR-ABL ligand set

Johanna GIOVANNINI Etienne LEHEMBRE Jean-Luc LAMOTTE Abdelkader OUALI Alban LEPAILLEUR

Albrecht ZIMMERMANN Bertrand CUISSART Ronan BUREAU and Bruno CREMILLEUX

Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) GREYC, Normandie Univ., UNICAEN, CNRS – UMR 6072 Université de Caen Normandie, France

Towards DAG-based interactive pharmacophore exploration: Application to the BCR-ABL ligand set

Towards DAG-based interactive pharmacophore exploration: Application to the BCR-ABL ligand set

2

06

Pathological context

- Cancers
- Inflammatory diseases
- Metabolic diseases (diabetes...)
- Autoimmune disorders

...

• Neurodegenerative diseases

2

Context

Pathological context

2

- Cancers
- Inflammatory diseases
- Metabolic diseases (diabetes...)
- Autoimmune disorders
- Neurodegenerative diseases

MAJOR Therapeutic interest for kinase inhibitors

Representation made with CORAL web application ; Metz et al., Cell Systems, 2018, 7 (3) ; doi.org/10.1016/j.cels.2018.07.001

Mechanism of action

Phosphorylation of proteins on hydroxyl groups (OH) → Protein Activation / Deactivation *via* a phosphate group transfer

PKI: 6 different types

PROTEIN KINASE INHIBITORS (PKI)

PKI: 6 different types

PKI – TYPE IV PKI – TYPE ATP competitive Allosteric inhibitors inhibition • Various sites of DFG in action PKI – TYPE PKI - TYPE VATP competitive • Bivalent inhibitors inhibition • ATP binding site + DFG out PKI – TYPE III PKI – TYPE VI Allosteric inhibitors . • Covalent binding Binding site . adjacent to ATP binding site

 $\bullet \bullet \bullet$

Context

PROTEIN

KINASE

INHIBITORS

(PKI)

BCR-ABL protein

Towards DAG-based interactive pharmacophore exploration: Application to the BCR-ABL ligand set

NORNS

9

Métivier et al., J Med Chem, 2018, 61

NORNS

PHARMACOPHORE EXPLORATION AND EVALUATION

Automatically computes pharmacophores from a large data set of molecules without any supervised selection of molecules

NORNS

PHARMACOPHORE EXPLORATION AND EVALUATION

Automatically computes pharmacophores from a large data set of molecules without any supervised selection of molecules

SCREENING OF MOLECULAR DATABASES

Query based on 2D pharmacophores

SEARCH FOR MULTI-ACTIVE MOLECULES

Discriminative capability through Emerging Pattern calculation

DEFINITION OF PHARMACOPHORE SPACE

Able to identify features occurring with high or low frequencies

Métivier et al., J Med Chem, 2018, 61

NORNS PROCESS

Métivier et al., J Med Chem, 2018, 61

NORNS PROCESS

Métivier et al., J Med Chem, 2018, 61

Métivier et al., J Med Chem, 2018, 61

NORNS pipeline

STEP 1

Sdf reader: 1479 compounds

STEP 2

Pharmacophore generation: From **1** to **7** motifs

STEP 3

Retain only pharmacophores with a support of **10** molecules

NORNS pipeline

STEP 1

Sdf reader: 1479 compounds

STEP 2

Pharmacophore generation: From **1** to **7** motifs

STEP 3

Retain only pharmacophores with a support of **10** molecules

112 291 pharmacophores

112 291 pharmacophores

Directed **A**cyclic **G**raph (DAG)

PHARMACOPHORE NETWORK

112 291 pharmacophores

Directed Acyclic Graph (DAG)

Hydrophobic group
Aromatic ring
Hydrogen-bond acceptor
Hydrogen-bond donor

Positively-ionizable group

Directed Acyclic Graph (DAG)

Hydrophobic group
 Aromatic ring
 Hydrogen-bond acceptor
 Hydrogen-bond donor

Positively-ionizable group

Directed Acyclic Graph (DAG)

From top to bottom: **Two pharmacophores are linked if one is included in the other.** Hydrophobic group Aromatic ring Hydrogen-bond acceptor Hydrogen-bond donor

- Positively-ionizable group

Directed Acyclic Graph (DAG)

From top to bottom: Two pharmacophores are linked if one is included in the other.

Considering molecule subsets: Distinct pharmacophores covering the exact same molecule subset form a General Equivalent Class (GEC).
Positively-ionizable group

Directed Acyclic Graph (DAG)

From top to bottom: **Two pharmacophores are linked if one is included in the other.**

Considering molecule subsets: Distinct pharmacophores covering the exact <u>same molecule subset</u> form a <u>General Equivalent Class (GEC).</u>

Positively-ionizable group

Directed Acyclic Graph (DAG)

From top to bottom: **Two pharmacophores are linked if one is included in the other.**

Considering molecule subsets: Distinct pharmacophores covering the exact <u>same molecule subset</u> form a <u>General Equivalent Class (GEC)</u>.

Distinct pharmacophores covering the exact same molecule subset <u>and</u> <u>sharing a family relationship</u> form a <u>Structured Equivalent Class (SEC)</u>.

Positively-ionizable group

Directed Acyclic Graph (DAG)

From top to bottom: **Two pharmacophores are linked if one is included in the other.**

Considering molecule subsets: Distinct pharmacophores covering the exact <u>same molecule subset</u> form a <u>General Equivalent Class (GEC)</u>.

Distinct pharmacophores covering the exact same molecule subset <u>and</u> <u>sharing a family relationship</u> form a <u>Structured Equivalent Class (SEC)</u>.

Positively-ionizable group

Directed Acyclic Graph (DAG)

⇒ Consideration of the smallest pharmacophoric description : Generator

⇒ Consideration of the greatest pharmacophoric description : Closed

Distinct pharmacophores covering the exact same molecule subset <u>and</u> <u>sharing a family relationship</u> form a Structured Equivalent Class (SEC).

Positively-ionizable group

Directed Acyclic Graph (DAG)

⇒ Consideration of the smallest pharmacophoric description : Generator

⇒ Consideration of the greatest pharmacophoric description : Closed

Distinct pharmacophores covering the exact same molecule subset <u>and</u> <u>sharing a family relationship</u> form a Structured Equivalent Class (SEC).

Positively-ionizable group

Directed Acyclic Graph (DAG)

Siblings concept

Positively-ionizable group

Directed Acyclic Graph (DAG)

Siblings concept

Consideration of pharmacophore <u>ancestors</u> (parents)

Positively-ionizable group

Directed Acyclic Graph (DAG)

Listing of all pharmacophore <u>successors</u> (children)

SEC = Structured Equivalent Class

Hydrophobic group Aromatic ring Hydrogen-bond acceptor

- Hydrogen-bond donor
- Positively-ionizable group

Directed Acyclic Graph (DAG)

⇒ From a relational DAG to a SEC-clusterized relational diagram

17

Directed **A**cyclic **G**raph (DAG)

PHARMACOPHORE NETWORK

112 291 pharmacophores

E. Lehembre et al., POSTER #13

Distinct pharmacophores bearing the exact same molecule subset <u>and sharing a family relationship</u> form a <u>Structured Equivalent Class (SEC)</u>.

E. Lehembre et al., POSTER #13

Norns Lattice

NORNS

NORNS

LOOKING FOR REMARKABLE PHARMACOPHORES

NORNS

LATTICE

E. Lehembre et al., POSTER #13

Directed Acyclic Graph (DAG)

LOOKING FOR REMARKABLE PHARMACOPHORES

...

FROM SEC TO PAD ?

E. Lehembre et al., POSTER #13

Norns Lattice

19

NORNS

LATTICE

15 477 SEC

Directed Acyclic Graph (DAG)

LOOKING FOR REMARKABLE PHARMACOPHORES

FROM SEC TO PAD ?

The search for outstanding details among pharmacophores

Directed **A**cyclic **G**raph (DAG)

FROM SEC TO PAD ?

20

E. Lehembre et al., POSTER #13

Norns Latt<u>ice</u>

Directed **A**cyclic **G**raph (DAG)

FROM SEC TO PAD ?

 $GR = \frac{Fit frequency within actives}{Fit frequency within inactives}$

Norns Lattice

NORNS

LATTICE

Directed Acyclic Graph (DAG)

FROM SEC TO PAD ?

 $GR = \frac{Fit frequency within actives}{Fit frequency within inactives}$

A **PAD** is a pharmacophore which GR value differs by at least 2 standard deviations from the mean GR value over itself and its siblings.

6 essential pharmacophoric motifs

Aromatic cycle R

Hydrophobic group

SEC = **S**tructured **E**quivalent **C**lass

20

Directed **A**cyclic **G**raph (DAG)

FROM SEC TO PAD?

(21

E. Lehembre et al., POSTER #13

FROM SEC TO PAD ?

17 'active' pharmacophores815 'inactive' pharmacophores

FROM SEC TO PAD ?

	O2 : n=7
17 ' <i>active</i> ' pharmacophores &	O3 : n=21
&	O4 : n=2
15 <i>Inactive</i> pharmacophores	O5 : n=2

FROM SEC TO PAD ?

32 PAD

17 *'active*' pharmacophores & **15** *'inactive*' pharmacophores O2 : n=7 O3 : n=21 O4 : n=2 O5 : n=2

289 molecules covered 159 active molecules 130 inactive molecules

[20.5% of active molecules] [18.4% of inactive molecules]

Initial dataset: 1479 molecules (773 active+706 inactive ones)

NORNS

LATTICE

FROM SEC TO PAD ?

17 'active' pharmacophores & **15** 'inactive' pharmacophores

02 : n=7 O3 : n=21 O4 : n=2 O5 : n=2

289 molecules covered 159 active molecules [: 130 inactive molecules [:

[20.5% of active molecules] [18.4% of inactive molecules]

Initial dataset: 1479 molecules (773 active+706 inactive ones)

NORNS

LATTICE

FROM SEC TO PAD ?

One example in O2 PADs

FROM SEC TO PAD ?

Positively-ionizable function

One example in O2 PADs

Alkaline moiety able to interact with an acid residue

Phenylbenzotriazinamine linker able to angle properly the two terminal moities

Constant phenol in terminal position

Matches											
106	132	155	244	254	266	267	327	331	345		
355	357	358	381	406	423	482	512	567	583		
591	702										

D

Alkaline moiety able to interact with an acid residue

Phenylbenzotriazinamine linker able to angle properly the two terminal moities

Constant phenol in terminal position

345

583

Alkaline moiety able to interact with an acid residue

Phenylbenzotriazinamine linker able to angle properly the two terminal moities

Constant phenol in terminal position

(Ph4:0) Me	
Support Size	22
Confidence	1
Growth Rate	Infinity

Matches										
106	132	155	244	254	266	267	327	331	345	
355	357	358	381	406	423	482	512	567	583	
591	702									

(Ph4:1) Me	asures
Support Size	32
Confidence	1
Growth Rate	Infinity

D

G	~ @	_
	A A A A A A A A A A A A A A A A A A A	
		•

	Matches										
54	61	84	85	111	133	138	145	159	166		
168	179	207	308	310	328	360	362	380	384		
395	423	487	520	522	523	529	573	590	653		
670	688	688									

OLVEREMBATINIB

Matches										
106	132	155	244	254	266	267	327	331	345	
355	357	358	381	406	423	482	512	567	583	
591	702									

Pyrrazolopyridine able to interact with hydrophilic residues

Constant central benzene for hydrophobic contacts

Alkaline moiety able to interact with an acid residue

(Ph4:1) M	
Support Size	32
Confidence	1
Growth Rate	Infinity

Support Size	22
Confidence	1
Growth Rate	Infinity

(Ph4:3) Meas	sures
Support Size	22
Confidence	θ
Growth Rate	0

Matches											
54	61	84	85	111	133	138	145	159	166		
168	179	207	308	310	328	360	362	380	384		
395	423	487	520	522	523	529	573	590	653		
670	688	688									

	Matches										
106	132	155	244	254	266	267	327	331	345		
355	357	358	381	406	423	482	512	567	583		
591	702										

	Matches											
885	886	937	1026	1028	1029	1032	1035	1062	1111			
1119	1131	1159	1169	1170	1262	1283	1325	1353	1408			
1431	1448											

(Ph4:0) MeasuresSupport Size22Confidence1Growth RateInfinity	(Ph4:3) MeasuresSupport Size22Confidence0Growth Rate0
R-(N-hvdroxvami	ide

(Ph4:1) Me	easures
Support Size	32
Confidence	1
Growth Rate	Infinity

Matches										
54	61	84	85	111	133	138	145	159	166	
168	179	207	308	310	328	360	362	380	384	
395	423	487	520	522	523	529	573	590	653	
670	688	688								

	Matches										
106	132	155	244	254	266	267	327	331	345		
355	357	358	381	406	423	482	512	567	583		
591	702										

Matches											
885	886	937	1026	1028	1029	1032	1035	1062	1111		
1119	1131	1159	1169	1170	1262	1283	1325	1353	1408		
1431	1448										

(Ph4:0) Measures Support Size 22 Confidence 1 Growth Rate Infinity	(Ph4:3) Measurespport Size22nfidence0owth Rate0
N-hydroxyamide	مہم NO BIOACTIVITY TOWARDS BCR-ABL

				Ma	tches				
885	886	937	1026	1028	1029	1032	1035	1062	1111
1119	1131	1159	1169	1170	1262	1283	1325	1353	1408
1431	1448								

(Ph4:1) Me	asures
Support Size	32
Confidence	1
Growth Rate	Infinity

				Ma	tches				
54	61	84	85	111	133	138	145	159	166
168	179	207	308	310	328	360	362	380	384
395	423	487	520	522	523	529	573	590	653
670	688	688							

	Matches									
106	132	155	244	254	266	267	327	331	345	
355	357	358	381	406	423	482	512	567	583	
591	702									

	D	
Р	P	
20	19	
D	D	

(Ph4:1) Measures					
Support Size	32				
Confidence	1				
Growth Rate	Infinity				

(Ph4:0) Mea	Isures
Support Size	22
Confidence	1
Growth Rate	Infinity

(Ph4:3) Measu	ires
Support Size	22
Confidence	Θ
Growth Rate	Θ

	Matches								
54	61	84	85	111	133	138	145	159	166
168	179	207	308	310	328	360	362	380	384
395	423	487	520	522	523	529	573	590	653
670	688	688							

Matches									
106	132	155	244	254	266	267	327	331	345
355	357	358	381	406	423	482	512	567	583
591	702								

				Ma	tches				
885	886	937	1026	1028	1029	1032	1035	1062	1111
1119	1131	1159	1169	1170	1262	1283	1325	1353	1408
1431	1448								

D	P 20 D 19 D 1 D	
(Ph4:1) Measures	(Ph4:0) Measures	(Ph4:3) Measures
Support Size 32 Confidence 1	Support Size 22 Confidence 1	Confidence 0
Growth Rate Infinity	Growth Rate Infinity	Growth Rate 0
PAD (siblings): global visua	alization of differents r	nolecular assemblies
	Molecule G 06 G	

Matches										
54	61	84	85	111	133	138	145	159	166	
168	179	207	308	310	328	360	362	380	384	
395	423	487	520	522	523	529	573	590	653	
670	688	688								

Matches										
106	132	155	244	254	266	267	327	331	345	
355	357	358	381	406	423	482	512	567	583	
591	702									

Matches										
885	886	937	1026	1028	1029	1032	1035	1062	1111	
1119	1131	1159	1169	1170	1262	1283	1325	1353	1408	
1431	1448									

Directed Acyclic Graph (DAG)

3

1479

To go further into structural entities and pharmacophore DAG:

An interactive visualization tools from Bordeaux University

Name Pharmacophores Stats Sibling Pertinence Percent threshold: Standar Num. of Frequen Ouality Deviatio Parents Childs (Pertine nce > 2) nce > 2) "IPI" 362 0.543912 0.543912 0.01 0.01 0.00000 6 "|N|" 0.00000 68 0.01 6 6 "|D|" 1 1440 0.01 6 0.00000 6 0.01 "|A|" 1479 0.5 6 0.00000 0.5 0.01 6 0 Quality threshold: "|R|" 1478 0.01 0.01 0.500354 6 0 6 "IHI" 6 1368 6 0 "IPIPI" 112 0.652159 1.047853 73 4.05405 73 2 0.88387 0.221129 74 'IDIPI' 76 0.530125 0.523824 0.026623 164 180 1.82927 162 "IDIPI" 54 0 608251 0.523824 0.356712 180 1.82927 162 1,82927 162 IDIPI 0.58936 0 523824 180 10 Frequency 🚾 🔄 > ≫ Page 1 of 1422 | Go to page: 1 ○ Show 10 ∨ threshold:

DAVID AUBER

THEO DUPONT THOMAS BARILLOT THIERNO-AMADOU DIALLO NICOLAS MAJOREL SOUFIANE EL-KHAILI YOHAN LEMATRE

26

E. Lehembre et al., POSTER #13

DAG visu

SEC = **S**tructured **E**quivalent **C**lass PAD = **P**harmacophore **A**ctivity **D**elta

Summary

SEC = **S**tructured **E**quivalent **C**lass PAD = **P**harmacophore **A**ctivity **D**elta

Summary

289 molecules covered 159 active + 130 inactive ones

SEC = **S**tructured **E**quivalent **C**lass PAD = **P**harmacophore **A**ctivity **D**elta

Summary

What else ?

Deciphering a pharmacophore network generated from BCR-ABL data

Damien Geslin⁽¹⁾⁽²⁾*, Alban Lepailleur⁽¹⁾, Jean-Luc Manguin⁽²⁾, Nhat Vinh Vo⁽¹⁾, Jean-Luc Lamotte⁽¹⁾, Bertrand Cuissart⁽²⁾, Ronan Bureau⁽¹⁾ (1) Centre d'Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.

(2) Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen, Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen France * Correspondence: damien.geslin@unicaen.fr

Introduction

Recently, we described a new approach for the automated detection of pharmacophores and their organization into a network starting from a large chemical dataset.² As a case study, we worked with a dataset dealing with BCR-ABL inhibitors and consisting of 1492 molecules (774 actives and 718 inactives). In this poster, we present a method used to spatialize the network by computing the graph edit distances (GED) between the pharmacophores. Then, a clustering approach was used to refine the partitioning by grouping pharmacophores according to their structures, activities and binding modes.

(absolute value of the change over the given distance).

C. C. C. C.

C2 C4 C4 Ca Ca

Outliers

Figure 3. Examples of Graph Edit Distance from 3 pharm

dist(A,B) = 14 ; dist(A,C) = 40 ; dist(B,C) = 36

The GED between all the pharmacophores were determined and distance matrices were

generated for each order (from O₃ to O₃). For the visualization of the pharmacophore network,

we focused on the 2, 5, or 10 nearest neighbors (NNs) of each pharmacophore based on the GED.

Active pharmacophore

Inactive pharmacophore

Figure 4. Representation of a BCR-ABL harmacophore network (O, and

2 NNsI obtained with Cutoscone

ce-directed layout algorithm

CA GREYC

Context

Computation of the graph edit distances (GED) Our methodology generates a large number of pharmacophores leading to a complexity for the GED uses a branch-and-bound algorithm to define the similarity between graphs.^{3,4} This similarity is computed from the costs associated to the substitution of nodes (10) or edges

search space. The objective of the present work is to organize and to analyze the pharmacophore network

Generation of the pharmacophores

A pharmacophore (Figure 1.B) describes a combination of chemical features shared by several active molecules and responsible for favorable interactions with the active site of a target.

In a pharmacophoric graph : - a node denotes a pharmacophoric feature ;

- an edge encodes the minimal distance between two nodes (number of chemical bonds)

Figure 1. A molecule (A) and its corresponding pharmacopharic graph (8)

The main parameters for the extraction of the pharmacophores are their order (number of features per pharmacophore), their support (number of molecules associated to the pharmacophore) and their cut-off value for the growth-rote (imbalance between actives and inactives). A selection of representative pharmacophore was achieved using MMRFS algorithm.^{1,1}

In the present study, we worked with different pharmacophore orders (O₃ for 3 nodes to O₂ for 7 nodes). Each pharmacophore is labelled with a class (active or inactive) in relation with the chemical compounds which fit it (ratio between active and inactive molecules).

Clustering and analysis of the pharmacophore network

The goal of clustering is to group together elements similar to each other in the same cluster. We tested three clustering methods (hierarchical clustering, kmeans, and spectral) after the detection of outliers using DBSCAN.5

- 1) We obtained the best clustering for O2 with hierarchical clustering (AGNES) according to the NMI values.
- 2) We started the visualization with an initial representation of the pharmacophore network (Figure 4). This representation was obtained by applying a force-directed layout algorithm and by considering the two nearest neighbors of each pharmacophore.
- 3) We superimposed the cluster-based partitioning of the O, pharmacophores on the initial pharmacophore network (Figure 5).

4) We draw a parallel between the active clusters 1-4 and the binding mode of Flaure 5. Superposition of clustering on the pharmacaphore network. Figure 6. Distribution of the pharmacophares into the cluste representative compounds (cocrystallographic data or docking simulations).

Figure 6. Correstalloaraphic data (clusters 2 and 3) and docking simulations (clusters 2 and 4) that support the links between the active clusters and kingse binding modes.

Conclusion

We described the computation of graph edit distances (GEDs) between pharmacophores extracted from a BCR-ABL dataset. The application of a graph layout algorithm provided us with a visual separation between the pharmacophores associated with active compounds and those associated with inactive compounds. A clustering approach was then used to characterize groups of pharmacophores that contain molecules with similar structures, biological activities, and binding modes

; Han, J.; Hsu, C.-W. Discriminative Frequ. ; C.; Fernández, A.; Serratosa, F. Ligand-I text, L. Tan, C. All. Maximum Proceedings of the second second

mation 2017 167 664-68 -

What else ?

What else ?

Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN)

Groupe de recherche en informatique, image et instrumentation de Caen (GREYC), Normandie Univ., UNICAEN, CNRS – UMR 6072

Université de Caen Normandie, France

