Molecular Dynamics Simulations: Theory and Applications (in Drug Design)

Hanoch Senderowitz Department of Chemistry, Bar-Ilan University, Israel

6th Strasbourg Summer School in Cheminformatics, June 2018, Strasbourg France

Binding Free Energy

- Docking and Scoring
- Pharmacophore
- QSAR

- Incomplete treatment of the binding process
- Static, single molecule view

$$A = kT \ln\left(\iint d\mathbf{p}^N d\mathbf{r}^N \exp\left(+\frac{E(\mathbf{p}^N, \mathbf{r}^N)}{kT}\right) \rho(\mathbf{p}^N, \mathbf{r}^N)\right)$$

01/01

The Potential Energy Surface

Sampling the PES

- Energy minimization
- Conformational search
- Molecular dynamics

Force Fields

- Force Fields
 - Defined by equations and parameters
 - Empirical
 - Are not correct / incorrect but rather useful / not useful
 - Build unique PESs

Energy Minimization and Conformational Search

MD: PES \rightarrow Phase Space

• Any experimentally measurable property is obtained by a weighted average of that property over all phase space:

$$=\int_{\Omega}A\(\boldsymbol{p}^{N},\boldsymbol{r}^{N}\)\rho\(\boldsymbol{p}^{N},\boldsymbol{r}^{N}\)d\Omega$$

- The weighting $\rho(\mathbf{P}^N, \mathbf{r}^N)$ function gives the probability of finding this particular system state in the phase space
- For the NVT (canonical) ensemble, the probability function is given by the Boltzmann function:

$$\rho(\boldsymbol{p}^{N},\boldsymbol{r}^{N}) = \exp(-E(\boldsymbol{p}^{N},\boldsymbol{r}^{N})/k_{B}T)/Q$$
$$Q_{NVT} = C\int d\boldsymbol{p}^{N}d\boldsymbol{r}^{N} \exp\left[-\frac{E(\boldsymbol{p}^{N},\boldsymbol{r}^{N})}{k_{B}T}\right]$$

The Ergodic Hypothesis

- In order for us to obtain the ensemble average <A>, we need to prepare many systems, each in a different state. This can't be done.
- Thus instead of averaging over many systems, we can propagate a single system through the phase space and average over time:

$$A_{ave} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t=0}^{\tau} A(\boldsymbol{p}^{N}(t)\boldsymbol{r}^{N}(t)) dt$$

• The ergodic hypothesis states that given enough time, a trajectory in phase space passes near every point in the space and spends in its region an amount of time proportional to its ensemble weight. Thus:

$$< A >= A_{ave}$$

• However since we can't simulate a process on a computer to infinity:

$$< A > \approx A_{ave}$$

Molecular Dynamics: The Basis

- Solve Newton's equations of motion

$$v(t) = \frac{dr(t)}{dt}$$

* 2nd law

$$F = m \cdot a(t) = m \cdot \frac{dv(t)}{dt}$$

From the PES

$$F_q = -\frac{dU}{dq}$$

Molecular Dynamics: The Method

- Assuming we have the positions, q, and velocities, v, at time t:
- The position at time t+ Δt is then given by:

 $\mathbf{q}(t + \Delta t) = \mathbf{q}(t) + \mathbf{v}(t)\Delta t$

• The velocity at time t+ Δt is then given by:

$$\mathbf{v}(t + \Delta t) = \mathbf{v}(t) + \mathbf{a}(t)\Delta t$$
 $a = \frac{\mathbf{F}}{\mathbf{m}}$ From energy function

• If we can compute the acceleration from the forces acting on each particle at any instant, we can simulate trajectories

Molecular Dynamics: The Trajectory

Setting Up an MD Simulation

Convergence Problems in Molecular Dynamics (a 20 Years Old Example...)

Enhanced Sampling Methods

Analysis

Covariance Matrix

 $N_{\text{cov}(X,Y)} \frac{\sum ((X_i - \langle X \rangle) \cdot (Y_i - \langle Y \rangle))}{\sqrt{\sum (X_i - \langle X \rangle)^2 \cdot \sum (Y_i - \langle Y \rangle)^2}}$

Principle Component Analysis (PCA)

purine nucleoside phosphorylase

Decherchi et al., Nature Comm. 2015, 6, 6155

Decherchi et al., Nature Comm. 2015, 6, 6155

Decherchi et al., Nature Comm. 2015, 6, 6155

Free Energy Perturbations

$$\Delta F(A \to B) = F_B - F_A = -k_B T \ln \left\langle \exp\left(-\frac{E_B - E_A}{k_B T}\right) \right\rangle_A$$

Free Energy Perturbations

Wang et al., JACS. 2015, 13:2695-703

Protein Folding

- Native-centric force field
- Multiple repeats
- Not all trajectories successful
- Environment is important
- Information about folding efficiency

Shi et al., bioRxiv , doi: . http://dx.doi.org/10.1101/350074

NTPDase2 Inhibitors: Potential Anti-Coagulates

Homology Modeling and Docking

Linear Interaction Energy (LIE) (Because Docking Didn't Work...)

 $\Delta G_{bind} = \alpha (\langle V_{l-s}^{vdw} \rangle_{bound} - \langle V_{l-s}^{vdw} \rangle_{free}) + \beta (\langle V_{l-s}^{el} \rangle_{bound} - \langle V_{l-s}^{el} \rangle_{free})$

Results

Selectivity of Most Potent Compound

NTPDase2 (20 µM)

NTPDase1 (inactive)

The Cystic Fibrosis Disease

- CF is the most common lethal, inherited disease among people of European descent
- The number of CF patients is estimated at 90,000 worldwide, about 30,000 of which are in the US (~700 in Israel, ~7000 in France)
- Median survival age is ~40 years
- CF results in pathologies in multiple organs
 - Depressed lung function, lung infection, inflammation, and advanced lung disease
- <u>Currently, there is no general cure for CF and</u> <u>most of the treatments are symptomatic</u>
- <u>CF is caused by mutations to the CFTR</u> <u>chloride channel</u>

CFTR Mutations

- ~2000 CFTR mutations
- > 300 mutations confirmed as CF-causing
- 12 mutations confirmed as non CF-causing
- All CF-causing mutations compromise the ability of CFTR to conduct

CF Treatment Hypothesis

- Impaired Cl⁻ conductance disrupts the salt-water balance across epithelial cells leading to accumulation of a viscous mucus layer which is colonized by bacteria
- Restoring Cl⁻ conductance to "normal" levels will ameliorate CF pathologies

Current ~ [# channels] * [open probability]

- <u>CFTR corrector</u>: Corrects the folding defect and increases the number of CFTR channels at the cell membrane
- <u>CFTR potentiator</u>: Increases the open probability of CFTR channels at the membrane
- Combo therapy: Does both

Potentiation Correction

Defective

CFTR

The Holy Grail

CF Therapeutics

- Mucociliary clearance agents
 - * 2 available, plus 5 in pipeline
- Anti-inflammatories
 - * 1 available, plus 4 in pipeline
- Antimicrobials
 - * 4 available, plus 8 in pipeline
- Agents to restore CFTR function
 - * 3 available, 11 in clinical trials, 5 preclinical stage

Available CFTR Modulators

Corrector: Lumacaftor (VX-809)

Potentiator: Ivacaftor (VX-770) approved for CF patients with the G551D (~4% of CF patient population), and other 22 gating mutations

OH

Symdeko Corrector: Tezacaftor (VX-661)

Where do modulators bind?

The Structure of CFTR

NBD1

CFTR is an ABC transporter

TMD1

- Membrane proteins
- Found in prokaryotes and eukaryotes
- Harness the energy of ATP hydrolysis for substrate transport across cell membranes

CFTR Sequence and Mutations

Rishishwar L et al. PLOS One 2012;7(8):e42336.

The Gating Cycle of CFTR

- >20 CFTR NBD1 crystal and NMR structures are currently available
- Studied mostly with respect to F508del

- Poorly behaved!
- A single structure of NBD2 is available
 - Dimer incompatible conformation
 - Catalytically inactive(H1402A)
- All attempts to demonstrate NBD1:NBD2 coupling have failed.

EM Maps of CFTR

Map Fitting

Open vs. Closed Channel

Structure^S Are Now Available

"Dynamic" Sites

P67L-CFTR: Where VX-809 Binds?

Take Home Messages

- Always look at your data
 - Don't just rely on numbers
- Its bad practice to deduce anything from a single simulation
 - Results vary and also depend on the simulations setup
- Hold yourself to the same standards you require from experimentalists
 - Multiple repeat, positive and negative controls

Acknowledgments

Group members

- Luba Simachev
- Netaly Khazanov
- Michael Zhenin
- Kobi Spiegel
- Malkeet Singh
- Hadar Binyamin
- Omer Kaspi

Former Group members

• Avi Yosipof

Yocheved Gilad

- Oren Nahum
- Efrat Noy
- Hannah Avgy
- Gal Fradin
- Tamar Getter
- Shirin Kahremani
- Reut Gigi
- Seema Dhail

United States – Israel Binational Science Foundation

Collaborators

- Bilha Fischer (BIU)
- CFFT consortium

CYSTIC FIBROSIS FOUNDATION

THERAPEUTICS