

Applicability Domain

Towards a more formal definition

thierry.hanser@lhasalimited.org

Thierry Hanser

Research Leader

shared **knowledge** • shared **progress**

Lhasa Limited Registered Office Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS Registered Charity (290866) +44 (0)113 394 6020 info@lhasalimited.org www.lhasalimited.org

Current understanding and definitions

OECD QSAR principles¹

- A defined endpoint
- An unambiguous algorithm

• A defined domain of applicability

- Appropriate measures of goodness-of—fit, robustness and predictivity
- A mechanistic interpretation, if possible

Common definition²

"AD is the response and chemical structure space in which the model makes predictions with a given reliability".

Guidance Document on the Validation of (Quantitative) Structure- Activity Relationship QSAR Models; OECD Series on Testing and Assessment No.69; OECD Series

Setubal workshop report : Jaworska, J. S.; Comber, M.; Auer, C.; Van Leeuwen, C. Environ. Health Perspect. 2003, 111, 1358–1360

Current understanding and definitions

OECD QSAR principles¹

- A defined endpoint
- An unambiguous algorithm

• A defined domain of applicability

- Appropriate measures of goodness-of—fit, robustness and predictivity
- A mechanistic interpretation, if possible

Common definition²

"AD is the response and chemical structure space in which the model makes predictions with a given reliability".

Reliability

Likelihood?

Boundaries

A good fundation to build on

- Mathea M, Klingspohn W, Baumann K. Chemoinformatic Classification Methods and their Applicability Domain. Mol Inf. 2016 May 1;35(5):160–80.
- Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O. Applicability Domain for QSAR Models:: Where Theory Meets Reality. International Journal of Quantitative Structure-Property Relationships. 2016 Jan;1(1):45–63.
- Norinder U, Rybacka A, Andersson PL. **Conformal prediction to define applicability domain** A case study on predicting ER and AR binding. SAR and QSAR in Environmental Research. 2016 Apr 2;27(4):303–16.
- Toccacheli P, Nouretdinov I, Gammerman A. Conformal Predictors for Compound Activity Prediction. arXiv:160304506 [cs] [Internet]. 2016 Mar 14 [cited 2016 May 11]; Available from: http://arxiv.org/abs/1603.04506
- Roy K, Kar S, Ambure P. On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems. 2015 Jul 15;145:22–9.
- Sheridan RP. The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity. J Chem Inf Model. 2015 Jun 22;55(6):1098–107.
- Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR Modeling: Where have you been? Where are you going to? J Med Chem. 2014 Jun 26;57(12):4977–5010.
- Carrió P, Pinto M, Ecker G, Sanz F, Pastor M. Applicability Domain Analysis (ADAN): A Robust Method for Assessing the Reliability of Drug Property Predictions. J Chem Inf Model. 2014 May 27;54(5):1500–11.
- Toplak M, Močnik R, Polajnar M, Bosnić Z, Carlsson L, Hasselgren C, et al. Assessment of Machine Learning Reliability Methods for Quantifying the Applicability Domain of QSAR Regression Models. J Chem Inf Model. 2014 Feb 24;54(2):431–41.
- Dragos H, Gilles M, Alexandre V. Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models. J Chem Inf Model. 2009 Jul 27;49(7):1762–76.

A good fundation to build on

molecular informatics models - molecules - systems

Full Paper

Structure Modification toward Applicability Domain of a QSAR/QSPR Model Considering Activity/Property

Volu

Shoki Ochi, Tomoyuki Miyao, Kimito Funatsu 💌

First published: 16 August 2017 | https://doi.org/10.1002/minf.201700076

Predicting skin sensitizers with confidence — Using conformal prediction to determine applicability domain of GARD

Andy Forreryd ^a 은 쯔, Ulf Norinder ^{b, c} 쯔, Tim Lindberg ^a 쯔, Malin Lindstedt ^a 은 쯔

Conformal Regression for Quantitative Structure–Activity Relationship Modeling–Quantifying Prediction Uncertainty

Fredrik Svensson*^{†‡} (b), Natalia Aniceto[†], Ulf Norinder^{§1}, Isidro Cortes-Ciriano[†], Ola Spjuth[⊥] (b), Lars Carlsson[#], and Andreas Bender[†] (c)

[†] Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

- [‡] IOTA Pharmaceuticals, St Johns Innovation Centre, Cowley Road, Cambridge CB4 0WS, U.K.
- § Swetox, Unit of Toxicology Sciences, Karolinska Institutet, Forskargatan 20, SE-151 36 Södertälje, Sweden
- ¹ Department of Computer and Systems Sciences, Stockholm University, Box 7003, SE-164 07 Kista, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-75124, Uppsala Sweden
- [#] Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, SE-43183, Mölndal, Sweden
- ⁷ Department of Computer Science, Royal Holloway, University of London, Egham Hill, Surrey, U.K.

Chemometrics and Intelligent Laboratory Systems Volume 170, 15 November 2017, Pages 77-83

A strategy on the definition of applicability domain of model based on population analysis

Yong-Huan Yun ^{a, b,} c A ⊠, Dong-Ming Wu ^{a, c}, Guang-Yi Li ^{a, c}, Qiao-Yan Zhang ^a A ⊠, Xia Yang ^a, Qin-Fen Li ^{a, c}, Dong-Sheng Cao ^d, Qing-Song Xu ^e

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

• Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

No boronic acids in the training set

OF

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Nearest Neighbours

Random forest

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Distance to data

Molecule classes

- Organic-Organometalic-Inorganic
- Class of molecules (Arom. Amines)

Feature representation

Unseen features

Agreement based

- RF consensus
- kNN

Descriptor ranges

- P Box
- Convex hull

Distance based methods

- Distance to data points
- Density

Response domain

Descriptor density

Mixture of different concepts

Applicability (can I use this model to make a prediction ?)

Reliability (is the prediction reliable?)

Decidability (can I make a clear decision)

Applicability (can I use this model to make a prediction?)

Decidability (can I make a clear decision)

Mixture of different concepts

Applicability Domain

Towards an extended and more formal framework

Applicability (of the model)

Reliability (of the prediction)

Aniceto, N., Freitas, A.A., Bender, A. et al. J Cheminform (2016) 8: 69. https://doi.org/10.1186/s13321-016-0182-y

Decidability (of the outcome)

Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination Ulf Norinder, Lars Carlsson, Scott Boyer, and Martin Eklund J. Chem. Inf. Model., 2014, 54 (6), pp 1596–1603

Intuitive, non ambigous and formal decision framework

Applicability domain: towards a more formal definition. Hanser T, Barber C, Marchaland JF, Werner S. SAR QSAR Environ Res. 2016 Nov;27(11):893-909. Epub 2016 Nov 9.

Articulation of the method

- Applicability domain is not a monolithic concept, there are 3 key layers
- Separation of concern can help clarify and formalise the notion of AD
- Purpose: Initiate a constructive discussion among our QSAR community to build a common understanding together
- Harmonize the way we define and present AD to the end users across models and applications
- **Remove confusion** for the end user and improve the value of our AD model

- Stéphane Werner
- Jean-François Marchaland
- Sébastien Guenes
- Lilia Fisk
- Chris Barber

Thank you for your kind attention

shared knowledge • shared progress

Lhasa Limited

+44(0)113 394 6020

Granary Wharf House, 2 Canal Wharf Leeds, LS11 5PS

info@lhasalimited.org

Registered Charity (290866)

Company Registration Number 01765239