

Chemical Structure Generation Based on Inverse Quantitative Structure-Property Relationship/Quantitative Structure-Activity Relationship

Kimito Funatsu Chemical System Engineering, The University of Tokyo

Strasbourg Summer School on Chemoifnormatics June 27, 2018

Outline

- 1: General introduction
 - Inverse QSPR/QSAR
 - Objective and hypothesis
- 2: Structure generation
- 3: Inverse QSPR/QSAR analysis (from y to x)
- 4: Structure generation based on inverse QSPR/QSAR
- 5: Summary

Molecular design with inverse quantitative structure-property/activity relationship (QSPR/QSAR)

Molecular Design with QSPR/QSAR

Quantitative structure-activity relationship (QSAR)

TPSA [Å²]

63.6

Obtaining x information from y

y: Objective variable (property, activity)

Chemical structures (chemical graphs)

Generating structures based on x information

x: Explanatory variables(Descriptors)

Inverse QSPR/QSAR analysis

y: Objective variable (property, activity)

Chemical structures (chemical graphs)

Obtaining **x** information from y

Not considering applicability domain (AD)

Poor predictability by multiple linear regression(MLR) model

- Only inside AD, predicted values produced by regression models should be reliable.
 - Density-based method
 - Ensemble-based method

Baskin, I. I., Kireeva, N. and Varnek, A. *Mol. Inform.* 29, 581–587, 2010 Kaneko, H. and Funatsu, K. *J. Chem. Inf. Model.* 54, 2469–2482, 2014

- Only inside AD, predicted values produced by regression models should be reliable.
 - Density-based method
 - Ensemble-based method

Baskin, I. I., Kireeva, N. and Varnek, A. *Mol. Inform.* 29, 581–587, 2010 Kaneko, H. and Funatsu, K. *J. Chem. Inf. Model.* 54, 2469–2482, 2014

- Only inside AD, predicted values produced by regression models should be reliable.
 - Density-based method
 - Ensemble-based method

Baskin, I. I., Kireeva, N. and Varnek, A. *Mol. Inform.* 29, 581–587, 2010 Kaneko, H. and Funatsu, K. *J. Chem. Inf. Model.* 54, 2469–2482, 2014

- Only inside AD, predicted values produced by regression models should be reliable.
 - Density-based method
 - Ensemble-based method

Baskin, I. I., Kireeva, N. and Varnek, A. *Mol. Inform*. 29, 581–587, 2010 Kaneko, H. and Funatsu, K. *J. Chem. Inf. Model.* 54, 2469–2482, 2014

- In inverse QSPR/QSAR analysis, AD has not been considered.
 - Not considering training data information
 - Extrapolation is allowed without limitation.

x: Explanatory variables(Descriptors)

Inverse QSPR/QSAR analysis

y: Objective variable (property, activity)

Chemical structures (chemical graphs)

Chemical structure generation

Treating limited variety (number) of descriptors

Not considering universal AD

Descriptors in Inverse QSPR/QSAR Analysis

- Specific type of descriptors is employed.
 - Kier indices, X indices, Wiener index.
 - Signatures
- Proper descriptor set varies from projects to projects.

M. I. Skvortsova, I. I. Baskin, *et al.*, *J. Chem. Inf. Comput. Sci.*, 33, 4, 630–634, 1993. C. J. Churchwell, *et al.*, *J. Mol. Graph. Model.*, 22, 263–273, 2004. Kirkpatrick, P. and Ellis, C. *Nature*, 432, 823–823, 2004.

- Universal AD is an abstract concept, which is irrelevant with models
 - Determined based only on the training data before constructing any QSPR/QSAR models.

Simple example: boiling point model

$$bp(^{\circ}C) = -126.19 + 33.42N_c - 6.286T_m$$

- N_c : Number of carbon atoms T_m : Number of terminal carbon atoms
- n = 39s = 5.86 $r^2 = 0.987$

Seybold, P. G., May, M. and Bagal, U. A. J. Chem. Educ. 64, 575, 1987

Simple example: boiling point model

$$bp(^{\circ}C) = -126.19 + 33.42N_c - 6.286T_m$$

This equation is valid for C2-C8 alkanes.

Structures to be generated should be restricted to alkanes.

Seybold, P. G., May, M. and Bagal, U. A. J. Chem. Educ. 64, 575, 1987

Challenges in inverse QSPR/QSAR analysis

Chemical structure generation

Treating limited variety (number) of descriptors

Not considering universal AD

Obtaining **x** information from y

Not considering AD

Poor predictability by MLR

To develop a practical chemical structure generation system based on inverse QSPR/QSAR by overcoming the challenges.

Chemical structures (chemical graphs)

QSAR and Inverse QSAR Workflow

Workflow of QSPR/QSAR analysis

x: Molecular descriptors

QSPR/QSAR model

y: predicted property/activity

a specific y value

QSPR and Inverse QSPR Workflow

Workflow of QSPR/QSAR analysis

y: predicted property/activity

a specific y value

QSPR and Inverse QSPR Workflow

QSPR and Inverse QSPR Workflow

Chemical structures giving a specific y can be exhaustively generated in inverse QSPR/QSAR by

- ✓ considering local and universal ADs,
- ✓ using efficient structure generator,
- \checkmark introducing variety of descriptors.

To develop a practical chemical structure generation system based on inverse QSPR/QSAR

Chemical structure generation	Obtaining x information from y			
Explaining a methodology for using variety of descriptors	Introducing probability density for treating AD			
Describing algorithms for treating chemical graphs	Explaining a non-linear regression methodology			

Goal To develop a structure generator that overcomes challenges as follows:

Challenges

Chemical structure generation

Treating limited variety (number) of descriptors

Not considering universal AD

- Using ring systems and atom fragments as building blocks in structure generation.
- Introducing monotonous changing descriptors (MCDs)

Challenges

Chemical structure generation

Treating limited variety (number) of descriptors

Not considering universal AD

B. D. McKay, *J. Algorithms*, 26, 306-324, 1993 Miyao, T., Arakawa, M. and Funatsu, K. *Mol. Inform.* 29, 111–125, 2010

Generation Strategy for Considering Universal AD 29

Building blocks (number and kinds)

- Ring systems in the training dataset.
- Elements in the training dataset.

Bemis, G. W. and Murcko, M. A. *J. Med. Chem.* 39, 2887–2893, 1996 Taylor, R. D., MacCoss, M. and Lawson, A. D. G. *J. Med. Chem.* 57, 5845–5859, 2014

Structure Generation by Combining Building Blocks 30

Ring systems and atom fragments are combined to form a chemical graph.

Challenges in Structure Generation

- Generating duplicate structures
 - Combinatorial explosion

Strategies for Pursuing Computational Efficiency

- Modifying the canonical construction path method to treat building blocks
 - Assure the uniqueness and exhaustiveness of the generated structures

- Using reduced graphs instead of ring systems
 - For speeding up graph operation during structure generation

Combining building blocks in a tree-like approach.

B. D. McKay, *J. Algorithms*, 26, 306-324, 1998 Miyao, T., Kaneko H., Funatsu, K. *J. Comput. Aided Mol. Des.* 2016, 30, 425-446.

- Monotonous changing descriptors (MCDs)
 - MCDs are descriptors whose values change monotonously by adding a building block to a growing structure.
 - molecular weight, topological indices

Miyao, T., Arakawa, M. and Funatsu, K. Mol. Inform. 29, 111–125, 2010.

- MCDs: 409 extracted from DRAGON 5 (790 descriptors)
- Data set: Ligands for alpha 2A adrenergic receptor (GVK)
 - y: pK_i
 - training data: 500, test data: 143
- Regression method: partial least squares regression

	Opt. Compt. ^a	$Q_{5 \text{fold}}^2$	RMSE _{cv}	R ²	RMSE _{pred}	R ² _{pred}
MCD	10	0.832	0.354	0.891	0.385	0.836
DRAGON	11	0.859	0.324	0.918	0.347	0.867

DRAGON for Windows (Software for Molecular Descriptor Calculation) version 5.4. GVK data base, *http://www.gvkbio.com*

- Propose efficient structure generation algorithms by combining ring systems and atom fragments
- Using all MCDs in DRAGON has molecular description ability compatible to the comprehensive descriptors
 - High predictability of a PLS regression model for alpha 2A adrenoceptor.

Goal To develop a inverse QSPR/QSAR methodology that overcomes challenges as follows:

Challenges

Obtaining \mathbf{x} information from y

Not considering applicability domain

Poor predictability by MLR

- Probability density function (PDF)
 - Gaussian mixture models (GMMs)
- Pseudo nonlinear regression methodology
 - GMMs and cluster-wise multiple linear regression (GMMs/cMLR)

Challenges

Obtaining **x** information from y

Not considering applicability domain

Poor predictability by MLR

- GMM: p(**x**)
- GMMs/cMLR: p(y|x)

y value Posterior density: p(**x**|y) In order to consider AD

Miyao, T., Kaneko, H. and Funatsu, K. J. Chem. Inf. Model. 56, 286–299, 2016.

Proposed Methodologies

- GMM: p(**x**)
- GMMs/cMLR: p(y|x)

$$p(\mathbf{x}) = \sum_{i=1}^{M} \pi_i N(\mathbf{x} | \mathbf{\mu}_i, \Sigma_i)$$

Prior distribution (p(x))

y value Posterior density: p(**x**|y) In order to consider AD

$$p(\mathbf{x} \mid y) = \sum_{i=1}^{M} \omega_i N(\mathbf{x} \mid \Delta \{\mathbf{A}^T \sigma^{-2} y + \boldsymbol{\Sigma}_i^{-1} \boldsymbol{\mu}_i\}, \Delta)$$

Posterior distribution (p(**x**|y))

Evaluation of Posterior PDF for a Criterion of AD

- Aqueous solubility dataset
 - training data: 900
 - test data: 254
 - Objective variable: LogS
 - Descriptors (6):
 - Molecular weight (MW)
 - Hydrogen bond donor (HBD)
 - Hydrogen bond acceptor (HBA)
 - Number of rings (CIC)
 - Topological polar surface area (TPSA)
 - Number of rotatable bonds (nBR)

- •7 Gaussians formed a prior PDF: p(x)
- With the Gaussians, GMMs/cMLR model was constructed.

	R ²	RMSE	R_{pred}^{2}	RMSE _{pred}
MLR	0.736	1.061	0.722	1.131
GMMs/cMLR	0.853	0.791	0.854	0.820

MLR

GMMs/cMLR

Posterior PDF of **x** Given a Specific y Value $p(\mathbf{x}|\mathbf{y})$ 41

Could inherit the prior distribution's feature

 AD was considered by the posterior PDF with GMMs and cluster-wise multiple linear regression(cMLR)

 Posterior PDF gains information from the degree of closeness to a target y value.

 GMMs/cMLR showed better predictability than MLR did.

4. Proposed Workflow for Inverse QSPR/QSAR

*Molgilla is a structure generator developed by our lab.

Miyao, T., Arakawa, M., Funatsu, K., *Mol. Inform.*, 29, 111–125, 2010 Miyao, T., Kaneko, H., Funatsu, K., *Mol. Inform.*, 33, 764-778, 2014

Case Study (Inverse QSAR)

- Target: Thrombin
- Dataset: from ChEBML 20, 1705 samples annotated with pK_i (inhibition constant)
 - confidence score > 7
 - bioactivity type K_i
 - assay type = B
- Elimination of peptide (more than 10 amide bonds or MW > 1,000)
- Descriptors: 27 MCDs

CIC	R05	aR	ZM1V	nBM	nHAcc Lipin	nCH_2R_2	nCHR ₃	nCH ₃ R
nCH ₃ X	nOH	=0	$nArNR_2$	nArCO	TPSA	LL	LD	LP
AA	AP	AN	DD	RL	RA	RD	RP	RR

Blue: Sum of topological distance-based descriptors

- inspired by the Chemically Advanced Template Search (CATS)

Reutlinger, M., Koch, C. P., Reker, D., Todoroff, N., Schneider, P., Rodrigues, T., Schneider, G., *Mol. Inform.* 32, 133–138. 2013

$p(\mathbf{x})$ and $p(y|\mathbf{x})$ with GMMs/cMLR

8 Gaussians formed p(x)

- RMSE: 0.993
- R²: 0.656

Structure Generation Conditions and Result

- Stochastic generation was conducted in order to generate structures having more building blocks.
- Prohibition rules were applied to avoid generating structures having reactive and unstable substructures
- Ring systems: 289
- Atom fragments: C, N, O, F, CI, Br, I

Generation Result

Generated Structures

Generated Structures

- Structure generation system based on inverse QSPR/QSAR was constructed
 - A Gaussian center of posterior PDF $p(\mathbf{x}|\mathbf{y})$ is selected for structure generation constraints

As a practical application, small molecules for thrombin inhibitor candidates were generated.

- Efficient chemical graph construction algorithms were introduced.
 - ring systems and atom fragments combination
 - constraints by MCDs are considered during generation
- Inverse QSPR/QSAR analysis methodology was proposed.
 - by introducing PDFs with GMMs/cMLR
 - AD consideration
 - higher predictability than with MLR
- A structure generation system by combining these methodologies was proposed in order to generate chemical structures *de novo*.

- Dr. Miyao, Tomoyuki
- Dr. Kaneko, Hiromasa
- Dr. Escobar, Matheus
- Dr. Tanaka, Kenichi
- Prof. Dr. Schneider, Gisbert
- Dr. Schneider, Petra