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2 Introduction 

In operating chemical plants, operators have to monitor  

operating condition of the plants and control process variables. 

But, all of them are not easy to measure online. 

Process variables need to be measured online. 

temperature, pressure, concentration of products, etc. 

Soft sensor 

concentration, ... temperature, pressure, ... 

input output 

measure online 

X: temperature, pressure, ... y: concentration, ... Database 

technical difficulties large measurement delays 

estimate online 

Model : y=f(X) 
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3 Soft Sensor 

Soft sensor model 

time / min 

Soft sensor model calculates 

values of ○ with T1, T2, and P. 

Temperature 

1 

Pressure 

Temperature 

2 

Concentration 

#Observed value. 
#Reduction of cost for 
chemical analyses. 
#Reported  with time delay.  



4 Process Analytical Technology (PAT) 

To appropriately measure, monitor and control the quality 

of drug products and intermediates at each process in real time 

To monitor the quality of all tablets 

non-destructively in real time 

 
e.g.Active Pharmaceutical Ingredient (API) content 

IR and NIR spectroscopy 

©Funatsu Laboratory. All rights reserved. 

     Soft sensors can achieve Real Time Release Testing (RTRT), in which  

the quality is controlled in each process by monitoring the quality and doing  

appropriate actions in real time, and the final product test would not be  

required. In addition, control limits can be set and the quality of products  

can be controlled by using soft sensors, which is Quality by Design (QbD) . 

The use of soft sensors is expanding now in pharmaceutical processes. 



5 Process Analytical Technology (PAT) 

Input Output 

Measured in real time 

Database 

Estimated online 

IR and NIR spectra 

Easy to measure Difficult to measure 

IR and NIR spectra (X) API, etc (y) 

Soft sensor 

y = f(X) 
API, etc 

To appropriately measure, monitor and control the quality 

of drug products and intermediates at each process in real time 

To monitor the quality of all tablets 

non-destructively in real time 
IR and NIR spectroscopy 
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6 Application of Soft Sensor 

 Pharmaceutical process 

 Chemical process 

– Polymer reactor 

– Distillation column 

etc 

 Agricultural process 

– Rice field 

– Fruit sorting 

etc 

 Biological process 

– Membrane bioreactor 

– Biomass ethanol process 

etc 
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7 Role of Soft Sensors 

 Analyzer alternative  

 

– Continuous prediction → Process control 

 

– Reduction of measurement frequency of analyzer 
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8 Role of Soft Sensors 

 Abnormal detection of analyzer 

By using a soft sensor, ... 

Time C
o

n
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n
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a
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o

n
 

Time 

Normal or Abnormal? 

  Normal ! 
Abnormal ! 

 Measured values 

C
o

n
c
e
n
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a
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o
n
 

 Predicted values 

Normal or Abnormal? 
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9 Role of Soft Sensors 

 Efficient process control 

Soft sensor 

y = f(X) 

input output 

Selection of 

optimal y trajectory 

Corresponding pattern 

of X 

y 

time 

time time 

X y 

time 

X 

Kimura, I.; Kaneko, H.; Funatsu, K. Kagaku Kougaku Ronbunshu, 2015;41:29-37. 
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Set 

point 

Set 

point 



10 Flow of Soft Sensor analysis and Problems 

 Reliability of data, data selection 

 Outlier detection, noise treatment 

 Which is an appropriate regression method? 

 Over-fitting 

 Nonlinearity among process variables 

 Variable selection 

 Dynamics in process 

 Model interpretation 

 Model validation 

 Applicability domain and predictive accuracy 

 Degradation of a model 

 Maintenance of a model 

 Detection and diagnosis of abnormal data 

Data collection 

Data preprocessing 

Modeling 

Model analysis 

Model operation 

Flow of soft  

sensor analysis 

Problems 
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12 Model Degradation 

x (Temperature) 

y 

(Concentration) 

Soft sensor 

 Catalyst performance loss 

 Change of raw materials 

etc 
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13 Model Degradation 

x 

y 

x 

y 

x 

y 

Shift of  

y-values [1] 

Shift of  

x-values [1] 

Slope change [1] 

[1] Kaneko H, Funatsu K. AIChE J. 2013;59: 2339–2347. 
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14 Objective 

To solve model degradation 

and 

To construct highly predictive soft sensor models 
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15 Adaptive Soft Sensor Models 

Soft sensor models adapting to changes in chemical plants. 

[1] Kaneko H, et al., AIChE J. 2009;55:87–98. 

[2] Qin SJ., Comput. Chem. Eng. 1998;22:503–514.  

[3] Kadlec P, Gabrys B. AIChE J. 2010;57:1288–1301. 

[4] Cheng C, Chiu MS., Chem. Eng. Sci. 2004;59:2801–2810. 

[5] Fujiwara K, et al., AIChE J. 2009;55:1754–1765. 

[6] Kim, S., et al., Int. J. Pharm. 2011;421:269-274. 

 Moving Window (MW) model 

– PLS-based MW model [1] 

– Recursive model [2] 

– Ensemble MW model [3] 

 Just-In-Time (JIT) model 

– Distance-based JIT model [4] 

– Correlation-based JIT model [5] 

– Locally-weighted PLS model [6] 

 Time Difference (TD) model 

– Normal TD model [7] 

– Nonlinear TD model [8] 

– Ensemble TD model [9] 

[7] Kaneko H, Funatsu K. Chemom. Intell. Lab. Syst.  

     2011;107:312–317.  

[8] Kaneko H, Funatsu K. Ind. Eng. Chem. Res. 

     2011;50:10643–10651. 

[9] Kaneko H, Funatsu K. Chemom. Intell. Lab. Syst.  

     2011;109:197–206. 
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16 Time Difference (TD) Model 

 Model constructed between TD of X and TD of y 

time 

y 

time 

x1 

time 

x2 

TD model Dy = f(Dx1, Dx2) 

TD model 

Dy 

Dx1 

Dx2 

Dx1 

Dx2 

Dypred 

Prediction 
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17 Moving Window (MW) Model 

 Model constructed with data that are measured most recently 

y 

x1 

x2 

MW model 
time 

time 

time 

Prediction 
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18 Moving Window (MW) Model 

y 

x1 

x2 

MW Model y=f(x1,x2) 
time 

time 

time 

Prediction 



19 Moving Window (MW) Model 

y 

x1 

x2 

MW Model y=f(x1,x2) 
time 

time 

time 

Prediction 



20 Just-In-Time (JIT) Model 

 Model constructed with data similar to prediction data 

x1 

x2 

JIT model y = f(x1, x2) 

y 

x1 

x2 

JIT model 
time 

time 

time 

Prediction 
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21 Characteristics of Adaptive Models [1] 

Degradation of model 
TD model MW model JIT model 

Type Speed 

Gradual ○ ○ × 

Rapid ○ △ × 

Abrupt ○ × × 

Gradual ○ ○ ○ 

Rapid ○ △ ○ 

Abrupt ○ × ○ 

Gradual × ○ △ 

Rapid × △⇒○[3] △ 

Abrupt × × △ 

[1] H. Kaneko, K. Funatsu, AIChE J. 2013;59: 2339–2347. 

[2] H. Kaneko, T. Okada, K. Funatsu, Ind. Eng. Chem. Res., 2014;53:15962-15968 

[3] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 2014;137:56-66. 

No all-round adaptive models ! 
Right models for a right type 

of degradation [2] !! 

Shift of y-values 

Shift of x-values 

Change of the slope 
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22 Proposed Method (Ensemble OSVR, EOSVR) 

OSVR model m (Cm, εm, γm)  

New data x(t) 

OSVR model 2 (C2, ε2, γ2)  

OSVR model 1 (C1, ε1, γ1)  yp,1(t) 

yp,2(t) 

yp,m(t) 

Input 

Output 

・
・
・
 

・
・
・
 

・
・
・
 

 yp(t) 

 Std. dev. 

1 

RMSE2 

(Calculated using the recent data set) 

©Funatsu Laboratory. All rights reserved. 

[1] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 137, 57–66 , 2014. 



23 How to get parameter sets 

y 

x1 

x2 

time 

time 

time 

C1, ε1, γ1 C2, ε2, γ2 C3, ε3, γ3 Cm, εm, γm 

Initial Database 
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24 Proposed Method (Ensemble OSVR, EOSVR) 

OSVR model m (Cm, εm, γm)  

New data x(t) 

OSVR model 2 (C2, ε2, γ2)  

OSVR model 1 (C1, ε1, γ1)  yp,1(t) 

yp,2(t) 

yp,m(t) 

Input 

Output 

・
・
・
 

・
・
・
 

・
・
・
 

 yp(t) 

 Std. dev. 

1 

RMSE2 

(Calculated using the recent data set) 
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[1] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 137, 57–66 , 2014. 



25 Calculation of RMSE 

y 

time 
Model 2 Model 1 Model 3 

RMSE Large Small Large 

1 

RMSE2 

Weight :  Small Large Small 
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26 Case Study 

 Exhaust gas denitration process at Mitsui Chemicals, Inc. 

Catalyst 

y ① NH3 concentration at the outlet of the denitration reactor 

② NOX concentration at the outlet of the denitration reactor 

 

X 23 variables: temperature, pressure, flow rate, and so on 

Variables 

4NO + 4NH3 + 2O2 → 4N2 + 6H2O 

NO + NO2 + 2NH3 → 2N2 + 3H2O 

[1] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 137, 57–66 , 2014. 
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27 Data Set 

 20,000 data in November 2012 

 

– First 10,000 data   : training data 

 

– Remaining 10,000 data : test data 

[1] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 137, 57–66 , 2014. 
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28 Prediction Results 

  Denitration outlet NH3 Denitration outlet NOX 

Model rp
2 RMSEP rp

2 RMSEP 

OSVR 0.742 0.119 0.960 1.51 

EOSVR 0.863 0.087 0.975 1.21 

©Funatsu Laboratory. All rights reserved. 

[1] H. Kaneko, K. Funatsu, Chemom. Intell. Lab. Syst., 137, 57–66 , 2014. 



29 Time Plots of Denitration Outlet NH3 
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31 Problem of MW Model 

y 

x1 

x2 

MW Model 
time 

time 

time 

Large error 
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32 Just-In-Time (JIT) Model 

 Model constructed with data similar to prediction data 

x1 

x2 

JIT model y = f(x1, x2) 

y 

x1 

x2 

JIT model 
time 

time 

time 

Prediction 
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33 Problem of JIT Model 

x1 

x2 
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34 Database Monitoring 

Appropriate database monitoring [1] 

To construct adaptive models (MW and JIT models) 

 with high predictive accuracy for wide data range 

New data (x, y) 

Add the new data 
in a database 

Delete the new data 

Informative 

Uninformative 

[1] H. Kaneko, K. Funatsu, AIChE J., 60, 160-169, 2014. 
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35 Database Monitoring Index (DMI) [1] 

 The DMI is calculated between two data (xi, yi) and (xj, yj) 

 
DMI

sim ,

a

i j

i j

y y


x x

sim(xi, xj) : Similarity between 
                  xi and xj 

a : Constant 

y 

Similar Dissimilar 

X 

Similar 

Dissimilar 

High 

Low 

[1] H. Kaneko, K. Funatsu, AIChE J., 60, 160-169, 2014. 
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36 Flow of Monitoring Database with the DMI 

Database 

New data 
(xi, yi) 

Minimum DMI-value 

DMI calculation 

Threshold PDMI  <  Minimum DMI-value Informative 
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37 Flow of Monitoring Database with the DMI 

Database 

New data 
(xi, yi) 

Minimum DMI-value 

Threshold PDMI  >  Minimum DMI-value Uninformative 
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38 Flow of Monitoring Database with the DMI 

Database 

New data 
(xi, yi) 

Minimum DMI-value 

Threshold PDMI  >  Minimum DMI-value Uninformative 
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39 Case Study 

 Numerical simulation data 

– The relationship between X and y is nonlinear. 

– The data whose variation comes from only noise exist. 

 

 Industrial distillation column data 

©Funatsu Laboratory. All rights reserved. 



40 Case Study 

y Concentration of bottom product with lowest boiling point 

 The measurement interval is 30 minutes. 

X 19 variables: temperatures, pressures, liquid level, 

reflux ratio, and so on 

F1

F3

T5A

P2

T4

P1

T3

T2

T7

F5

T6

F4

L1

F6

T8

T1

F2

Variables 

A distillation column at Mitsubishi Chemical Corporation 

©Funatsu Laboratory. All rights reserved. 



41 Data 

0 500 1000 1500 2000
-5

0

5

y

time [×30 min] 
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42 Adaptive Models and Setting of DMI 

 MW model 

– Online support vector regression [1] 

– The upper limit of the number of data in the database : 50 

 JIT model 

– Locally-weighted partial least squares [2] 

– The upper limit of the number of data in the database : 500 

• The old data was deleted automatically. 

 

 DMI 

– Similarity: Gaussian kernel 

 2
DMI

exp

a

i j

i j

y y






 x x

[1] H. Kaneko, K. Funatsu, Comput. Chem. Eng., 2013;58:288-297. 
[2] S. Kim, M. Kano, H. Nakagawa, S. Hasebe, Int. J. Pharm., 2011;421:269–274. 
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43 Time Plots of Measured and Predicted y (MW) 
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44 Time Plots of Measured and Predicted y (JIT) 
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46 Process Control Using Soft Sensor 

Estimated values 

of  U 
Set point of y 

Input variable：U 

Operating condition：O 
Output variable：y 

Database 

Input 

Input 

Output 

Set point of O 

Modeling 

Soft sensor 
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47 Inverse Soft sensor-based Feed Forward (ISFF) Control 
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Input variable U 

uf 
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：Data 
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：Parameters 
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u0 

y0 

Soft sensor 

Output variable y 

Input variable U 

Set point 
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：Estimated 
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teteISE 

I. Kimura, H. Kaneko, K. Funatsu,  

Kagakukogakuronbunshu, 2015;41:29-37. 

Operating 

condition O 
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Integral of Squared Error 



48 Case Study 

[1] Seborg, D. E., T. F. Edgar, and D. A. Mellichamp, Process Dynamics and Control, 2nd Edition, 
     Wiley, 2004, pp. 34–36 and 94–95.  

continuous stirred-tank reactor system 

(CSTR simulator [1]) 

 Irreversible 1st-order 
exothermic reaction 

A → B 

Process variables 

Output variable y :  
Outlet B-concentration CB 

 Input variable U :  
Set point of inlet A-concentration CA0 

Operating condition O :  
Temperature of cooling water Tc 

Measurement interval 

Concentration : 30 min. (30 min. delay) 

Temperature : 1 min. (No delay) 

Ratio 

setting 

Soft sensor 

Support vector regression 
(nonlinear) 
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49 Control Results 
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― PI control 

― ISFF 

― PI control 

― ISFF 

Control performance improved. 
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50 Summary 

 Soft sensors are a key technique to predict the quality of products and 

to control the process.  

 

 Ensemble Online Support Vector Regression (EOSVR) can predict y-values 

accurately when process states are time-varying and process changes 

are nonlinear. 

 

 The prediction ability of adaptive soft sensors can improve by monitoring 

database appropriately. 

 

 Efficient process control can be performed by using 

Inverse Soft sensor-based Feed Forward (ISFF) control 

©Funatsu Laboratory. All rights reserved. 
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