HelmholtzZentrum münchen German Research Center for Environmental Health

Early ADME/Tox predictions: toy or tool?

Igor V. Tetko

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH) Institute of Bioinformatics & Systems Biology

Obernai, France, 21 June 2010

Helmholtz Zentrum München statistics

- Previous name (before 2008): GSF (Forschungszentrum f
 ür Umwelt und Gesundheit GmbH)
- Part of Helmholtz Network (2.35 Milliards Euro, 26500 people, 15 centers)
- Leading center for Environmental Health in Germany
- 25 institutes (1797 people, ca 700 scientists & 300 PhD students)*
- 70 contracts with EU
- Strong IPR and management support
- Institute for Bioinformatics & Systems Biology
 - 50 peoples, strong expertise in *in silico* data analysis, machine learning methods, software development, data dissemination (Web, Internet)

*January 2008

Layout of presentation

Productivity of R&D companies

Importance of ADMETox parameters

Overview of eADMETox properties/data

Applicability Domain challenges

- LogP benchmarking study
- AD for qualitative models AMES test

Data integration

OCHEM – On-line CHEmical database & Modeling environment Conclusions

Pharma R&D Cost and Productivity: Fewer drugs, more expenditure

Source : PhRMA 2007, FDA

HelmholtzZentrum münchen

*Biological license applications German Research Center for Environmental Health

Potential ADME/T market (US \$ billions)¹

It will grow up to US\$ 4.4 billion up to 2012²

Razvi, E.S. *Drug and Market Development* (2003).
 http://www.researchandmarkets.com/reports/c84850

HelmholtzZentrum münchen German Research Center for Environmental Health

Pharma R&D: Cost and Productivity issues Compound numbers

products, drug interactions, etc etc

Preclinics Costs: > \$300m PER COMPOUND to reach approval

Courtesy from Dr. Höfer

ADME/T

Absorption

enters organism (by oral administration)

Distribution

distributed between blood/ plasma/tissues (e.g. brain)

Metabolism

bio-converting

Elimination

mechanisms and pathways for excretion of drugs

Toxicity

undesired interactions of drug or its metabolites

Size, lipophilicity, solubility, ionization, permeability, active transport

Affinity to different tissues, permeability, active transport

Affinity to different enzymes

Active transport, size, lipophilicity, ionization, permeability (also for metabolites)

Presence of toxicological pharmacophores, liophilicity

Interplay of physico-chemical properties with in vivo pharmacological activities/data

Interest in Phys-Chem properties

HelmholtzZentrum münchen

German Research Center for Environmental Health Wang &

Wang & Shkolnik, Chem. & Biodiversity, 2009, 6, 1887.

Number of molecules processed at the Abbot site through the various algorithms available on the property calculation web page

HelmholtzZentrum münchen German Research Center for Environmental Health Y. C. Martin, QSAR Comb. Sci., 2006, 25, 1192.

Properties Used to Define Drug-Likeness

Property	Drugs	CNS-Drugs	Leads	Fragments
MW	<500	<450	<400	<300
logP	<5	0-4	<4	<3
HA	<10		<8	<3
HD	<5		<4	<3
logD _{7.4}	1-3	1-4		
PSA	<140	<80	<120	<90

ASSOCIATIO

Profiling of chemical compounds (Optibrium Ltd)

Property	Desired Value	Importance
logS	> 1	
HIA category	+	
logP	≤ 3.5	
P-gp category	no	
PPB category	low	
2C9 pKi	≤ 6	
2D6 affinity category	low medium	
hERG pIC50	≤ 5	
BBB log([brain]:[blood])	≤ -0.5	
BBB category	-	•

HelmholtzZentrum münchen German Research Center for Environmental Health

Segal et al, Chem. Biodiver., 2009, 6, 2144.

Profiling of chemical compounds (Optibrium Ltd)

HelmholtzZentrum münchen German Research Center for Environmental Health

Segal et al, Chem. Biodiver., 2009, 6, 2144.

ADMET parameters

Absorption

Caco-2 (colorectal carcinoma cells) MDCK (Madin-Darby Canin Kidney) PAMPA (parallel artificial membrane permeability assay) Human Intestinal Absorption %FA (% of absorbed drug mass) Active transporters (P-glycoprotein, multi drug resistance protein – efflux, peptide, amino-acid transporters – absorption)

Metabolism

CYP450

Aldehyde/Alcohol dehydrogenases Hydrolases, oxidases, esterases Microsomes, hepatocytes Genetically modified cell lines to express single CYP450

Distribution

BBB (Blood-Brain Barrier) PPB (Plasma protein Binding) HSA (Human Serine Albumin) binding Tissue partitioning Volume of distribution=dose/ C_0 (C_0 is initial concentration of a drug in plasma)

Elimination

Route of elimination (renal, liver (bile->faeces, metabolism)

Toxicity

AMES test DDI (inhibition/activation of CYP450) hERG (human ether-a-go-go-related gene) potassium channel inhibition Toxicity alerts

Physico-chemical properties

In vitro: logP logD Solubility in water Solubility in DMSO pKa Solubility in simulated intestinal fluid

Absorption:

In vitro: CaCo-2 MDCK PAMPA

In vivo: %FA

Distribution:

In vitro:	In vivo:
PPB	BBB – animal models
HSA	Tissue partitioning
BBB	

Metabolism:

In vitro:

CYP450

Genetically engineered cell lines to study individual CYP

Microsomes

Hepatocytes

In vivo: MS analysis

Toxicity

In vitro: AMES mutagenicity hERG toxicity

In vivo: Animal models (LD50)

ADMETox properties

Physico-chemical

Lipophilicity (logP/logD)

- ~ 20k (>100k)
 Aqueous solubility
 - ~ 10k (~100k)

рКа

• ~ 10k (~100k ?)

Solubility in DMSO

• ~1k (>100k)

Biological properties

%FA (Fraction Absorbed) ~1k Blood-Brain barrier ~1k CYP450 affinities ~10k Transporters (PgP) ~10k Ion channels (hERG) ~10k Microsomes ~100k Hepatocytes ~10k VD ~300

Available sources: WOMBAT, Symyx, CHeMBL, PHYSPROP, ChemSpider, OCHEM

Additional readings:

In Silico ADME Prediction: Data, Models, Facts and Myths, Lombardo, F.; Gifford, E.; Shalaeva, M.Y. Mini Reviews in Medicinal Chemistry, 2003, 3, 861-875

Comprehensive Medicinal Chemistry II: In silico tools in ADMET; Testa, B., van de Waterbeemd, H., Eds.; Elsevier: 2006; Vol. 5.

Chemistry & Biodiversity, vol. 6, 2009.

Mini Reviews in ...

Medicinal Chemistry

What are the goals of modeling?

Decrease number of experimental measurements by substitution of them with computational predictions.

This can be achieved when computational accuracy of models is similar (or better!) to that of experimental measurements.

Can we achieve it?

"One can not embrace the unembraceable."

Possible: 10⁶⁰ - 10¹⁰⁰ molecules theoretically exist

Achievable: $10^{20} - 10^{24}$ can be synthesized now by companies (weight of the Moon is ca 10^{23} kg)

Available: 2*10⁷ molecules are on the market

Measured: $10^2 - 10^5$ molecules with ADME/T data

Problem: To predict ADME/T properties of just molecules on the market we must extrapolate data from one to 1,000 - 100,000 molecules!

There is a need for methods which can estimate the accuracy of predictions!

HelmholtzZentrum münchen German Research Center for Environmental Health

Kozma Prutkov 10⁸⁰ atoms in the Universe

Current dogma about prediction of physicochemical properties

- Prediction of physico-chemical properties, in particular log P, is simple
- There is no need to measure them
- We have enough number of good computational methods

Is this true?

Statistics of logP benchmarking

30 (18) methods - major commercial providers and public software

Public dataset: N=266 molecules

in house data: N=95809 molecules from Prizer N=889 molecules from Nycomed

Arithmetic Average Model (AAM):

mean logP was used as a prediction (one value for all molecules)

Rank III: models with errors (RMSE) \geq AAM, i.e. <u>non-predictive</u> Rank I: models with RMSE identical or close to the best method Rank II: remaining models

	Mathad	Star set (<i>N</i> = 223)				Non-Star set (<i>N</i> = 43)					
	wethod			% with	in error ra	ange			% with	in error r	ange
		RMSE	rank	<0.5	0.5-1	>1	RMSE	rank	<0.5	0.5-1	>1
	AB/LogP	0.41		84	12	4	1.00		42	23	35
	S+logP	0.45	1	76	22	3	0.87	1	40	35	26
	ACD/logP	0.50	1	75	17	7	1.00	1	44	33	23
	Consensus log P	0.50		74	18	8	0.80		47	28	26
rank I – high accuracy predictions.	CLOGP	0.52		74	20	6	0.91		47	28	26
PMSE ~ bost model	VLOGP OPS	0.52	11	64	21	7	1.07	1	33	28	26
RWSL ~ Dest model	ALOGPS	0.53	11	71	23	6	0.82	- I	42	30	28
	MiLogP	0.57	11	69	22	9	0.86	- I	49	30	21
rank II – good predictions,	XLOGP	0.62	11	60	30	10	0.89	1	47	23	30
RMSE <aam< td=""><td>KowWIN</td><td>0.64</td><td>11</td><td>68</td><td>21</td><td>11</td><td>1.05</td><td>1</td><td>40</td><td>30</td><td>30</td></aam<>	KowWIN	0.64	11	68	21	11	1.05	1	40	30	30
	CSlogP	0.65	Ш	66	22	12	0.93	1	58	19	23
	ALOGP (Dragon)	0.69	Ш	60	25	16	0.92	1	28	40	33
rank III – low accuracy predictions,	MolLogP	0.69	Ш	61	25	14	0.93	1	40	35	26
RMSE > AAM	ALOGP98	0.70	Ш	61	26	13	1.00	1	30	37	33
	OsirisP	0.71	Ш	59	26	16	0.94	1	42	26	33
	VLOGP	0.72	Ш	65	22	14	1.13	1	40	28	33
	TLOGP	0.74	Ш	67	16	13	1.12	1	30	37	30
	ABSOLV	0.75	Ш	53	30	17	1.02	1	49	28	23
	QikProp	0.77	Ш	53	30	17	1.24	Ш	40	26	35
	QuantlooP	0.80	Ш	47	30	22	1.17	Ш	35	26	40
AAM = base ("no model") model,	SLIPPER-2002	0.80	Ü.	62	22	15	1.16	II.	35	23	42
$R^{2}=0$, it used just one logP value as	COSMOFrag	0.84	Ü.	48	26	19	1.23	II.	26	40	33
predicted value for all 05900 or 992	XLOGP2	0.87	Ü.	57	22	20	1.16	II.	35	23	42
predicted value for all 95609 of 662	QLOGP	0.96	Ш	48	26	25	1.42	Ш	21	26	53
molecules, respectively.	VEGA	1.04	ii ii	47	27	26	1.24	II.	28	30	42
	CLIP	1.05	ii ii	41	25	30	1.54	Ш.	33	9	49
	LSER	1.07	ii ii	44	26	30	1.26	I	35	16	49
	MLOGP (Sim+)	1.26	II.	38	30	33	1.56	III	26	28	47
	NC+NHET	1.35	III	29	26	45	1.71	III	19	16	65
	SPARC	1.36	III	45	22	32	1.70	III	28	21	49
	MLOGP(Dragon)	1.52	III	39	26	35	2.45	III	23	30	47
	I SFR UF7	1 60	III	36	23	41	2 79	III	19	12	67
		1.62	<u>ii</u>	22	24	53	2.10	<u>ji</u>	19	28	53
	VLOGP-NOPS	1.76		1	1	7	1.39		7	0	7
	HINT	1.80		34	22	44	2.72		30	5	65
	GBLOGP	1.98		32	26	42	1.75		19	16	65

Performance of algorithms for the public dataset

Our methodology is top-ranked in a recent benchmarking

- Benchmarking was done by Pfizer and Nycomed – no data were available to participants
- Our ALOGPS algorithm was topranked (according to the lowest RMSE errors)
- Several methods performed worse than making no prediction,

AAM base ("no model") model, R²=0, it used just <u>one logP value as</u> predicted value for all 95809 or 882 molecules, respectively.

		Pf	zer se	t (N =	95 80	9)		Nycomed s				set (N = 882)		
1000000	RMSE	Failed ¹	rank	% in <0.5	error r	ange >1	RMSE, zwitterions	RMSE	rank	% in	error r	ange >1		
Method					1		excluded ^p				1	2.2		
Consensus log P	0.95		1	48	29	24	0.94	0.58	1	61	32	7		
ALOGPS	1.02		1	41	30	29	1.01	0.68	1	51	34	15		
S+logP	1.02		1	44	29	27	1.00	0.69	1	58	27	15		
NC+NHET	1.04		11	38	30	32	1.04	0.88	III	42	32	26		
MLOGP(S+)	1.05		II	40	29	31	1.05	1.17	Ш	32	26	41		
XLOGP3	1.07		Ш	43	28	29	1.06	0.65	1	55	34	12		
MiLogP	1.10	27	II	41	28	30	1.09	0.67	Т	60	26	14		
AB/LogP	1.12	24	Ш	39	29	33	1.11	0.88	Ш	45	28	27		
ALOGP	1.12		II	39	29	32	1.12	0.72	II	52	33	15		
ALOGP98	1.12		Ш	40	28	32	1.10	0.73	Ш	52	31	17		
OsirisP	1.13	6	Ш	39	28	33	1.12	0.85	11	43	33	24		
AAM	1.16		Ш	33	29	38	1.16	0.94	Ш	42	31	27		
CLOGP	1.23		Ш	37	28	35	1.21	1.01	Ш	46	28	22		
ACD/logP	1.28		Ш	35	27	38	1.28	0.87	Ш	46	34	21		
CSlogP	1.29	20	Ш	37	27	36	1.28	1.06	Ш	38	29	33		
COSMOFrag	1.30	1088 ³	Ш	32	27	40	1.30	1.06	Ш	29	31	40		
QikProp	1.32	103	Ш	31	26	43	1.32	1.17	Ш	27	24	49		
KowWIN	1.32	16	ш	33	26	41	1.31	1.20	Ш	29	27	44		
QLogP	1.33	24	Ш	34	27	39	1.32	0.80	Ш	50	33	17		
XLOGP2	1.80		ш	15	17	68	1.80	0.94	Ш	39	31	29		
MLOGP(Dragon)	2.03		Ш	34	24	42	2.03	0.90	Ш	45	30	25		

HelmholtzZentrum münchen German Research Center for Environmental Health

Mannhold, R. et al, J. Pharm. Sci., 2009, 98(3), 861-893.

ALOGPS decreases errors about twice using local corrections for *N*=95809 *in house* Pfizer molecules

ALOGPS Blind prediction

ALOGPS LIBRARY

ca 30 minutes of calculations on a notebook!

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, QSAR Comb. Sci., 2009, 28, 845-9.

The descriptor space challenge

We need to know the target property and select correct descriptors!

Property-based space similarity illustration

Do they agree in their votes (**STD**)? Do they have the same pattern of votes (**CORREL**)?

HelmholtzZentrum münchen German Research Center for Environmental Health

Associative Neural Network Property-Based DMs

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko et al, *DDT*, **2006**, *11*, *700-7*.

Illustration of local correction using nearest neighbors

HelmholtzZentrum münchen German Research Center for Environmental Health

ALOGPS decreases errors about twice using local corrections for *N*=95809 *in house* Pfizer molecules

ALOGPS Blind prediction

ALOGPS LIBRARY

ca 30 minutes of calculations on a notebook!

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, QSAR Comb. Sci., 2009, 28, 845-9.

Illustration of local correction using nearest neighbors

HelmholtzZentrum münchen German Research Center for Environmental Health

ALOGPS distinguishes reliable vs. non-reliable predictions in property-based space (CORREL)

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, Chemistry & Biodiversity, 2009, 6(11), 197-202. HELMHOLTZ

The use of ALOGPS advanced features dramatically increase prediction accuracy of the predictions

The experimental measurements accuracy was achieved for >60,000 Pfizer compounds.

Estimation of toxicity against T. pyriformis

T. pyriformis

Prof. T.W. Schultz

The overall goal is to predict and <u>to assess the reliability of predictions</u> toxicity against *T. pyriformis for chemicals directly from their structure.*

Dataset: 1093 molecules

HelmholtzZentrum münchen German Research Center for Environmental Health Zhu et al, J. Chem. Inf. Model, 2008, 48, 766-84.

Analyzed QSARs (Quantitative Structure Activity Relationship) and distances to models (DM)

country	modeling techniques	descriptors	abbreviation	distances to m	odels (in space)
				descriptors	property-based
	ensemble of 192	MolconnZ	kNN-MZ	EUCLID	STD
-	kNN models				
125	ensemble of 542	Dragon	kNN-DR	EUCLID	STD
A	kNN models				
1) m ////	SVM	MolconnZ	SVM-MZ		
	SVM	Dragon	SVM-DR		
	SVM	Fragments	SVM-FR		
C	kNN	Fragments	kNN-FR	EUCLID,	
	MLR	Fragments	MLR-FR	TANIMOTO	
	MLR	Molec. properties	MLR-COD		
		(CODESSA-Pro)			
	OLS	Dragon	OLS-DR	LEVERAGE	
2	PLS	Dragon	PLS-DR	LEVERAGE	PLSEU
	ensemble of 100		ASNN-		
	neural networks	E-state indices	ESTATE		CORREL STD
	neurur neuronko				
All	consensus model	-	CONS		STD

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, *J Chem Inf Model*, **2008**, 48(9):1733-46.

Overview of analyzed distances to models (DMs)

EUCLID $EU_m = \frac{\sum_{j=1}^k d_j}{k}$ k is number of nearest $EUCLID = E\overline{U}_m$ neighbors, m index of model	TANIMOTO $Tanimoto(a,b) = \frac{\sum x_{a,i}x_{b,i}}{\sum x_{a,i}x_{a,i} + \sum x_{b,i}x_{b,i} - \sum x_{a,i}x_{b,i}}$ $x_{a,i} \text{ and } x_{b,i} \text{ are fragment counts}$
LEVERAGE	PLSEU (DModX)
$LEVERAGE = \mathbf{x}^{\mathrm{T}} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{x}$	Error in approximation (restoration) of the vector of input variables from the latent variables and PLS weights.
STD $STD = \frac{1}{N-1} \sum (y_i - \overline{y})^2$	CORREL
	$CORREL(a) = \max_{j} CORREL(a,j) = R^{2}(\mathbf{Y}_{calc}^{a}, \mathbf{Y}_{calc}^{j})$
y_i is value calculated with model <i>i</i> and \overline{y} is average value	$Y^{a}=(y_{1},,y_{N})$ is vector of predictions of molecule <i>i</i>

Property-based, ASNN model: DM does work!

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

Descriptor space, ASNN model: DM does not work

HelmholtzZentrum münchen German Research Center for Environmental Health Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

Ranking of Distance to Models (DM)

DM		aver	rage rank	hi	ghest rai	nk ¹
	LOO	5-CV	Valid.*	LOO	5-CV	Valid.
STD-CONS	1	1.8	1.1	12	2	11
STD-ASNN	2	1.2	2.5		10	1
STD-kNN-DR	6.6	4.3	4.1			
STD-kNN-MZ	9.2	8.3	5.3			
EUCLID-kNN-DR	7.1	4.9	5.4			
LEVERAGE-PLS	8.4	5	6.3			
EUCLID-kNN-MZ	7.5	7.1	6.4			
TANIMOTO-kNN-FR	7	6.1	6.8			
TANIMOTO-MLR-FR	8.3	8.3	9			
CORREL-ASNN	10.7	10.8	9.4			
LEVERAGE-OLS-DR	12.3	12.6	11.1			
EUCLID-MLR-FR	7	9.3	11.5			
PLSEU-PLS	11.1	11.8	11.5			
EUCLID-kNN-FR	12.1	13.3	12.1			

*Ordered by performance of the DMs on the validation dataset

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.

Analysis of DMs for a linear model

HelmholtzZentrum münchen German Research Center for Environmental Health

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.

Classification task distance measures

A. CLASS-LAG

B. CONS-STD

C. PROB-CONS-STD

HelmholtzZentrum münchen

German Research Center for Environmental Health

Binary classification

HelmholtzZentrum münchen German Research Center for Environmental Health

Prediction of Ames Mutagenicity set

http://ml.cs.tu-berlin.de/toxbenchmark Toxicity against *Salmonella typhimurium*

Training dataset: 4361 molecules "Blind" test dataset: 2181 molecules 54% with mutagenic effect

Large international collaboration effort of >10 labs from USA, Canada, EU, Russia, the Ukraine & China (see also poster P-22)

Prof. Bruce N. Ames Inventor of the test (1975)

HelmholtzZentrum münchen German Research Center for Environmental Health

¹Schwaighofer et al, *JCIM*, **2008**, 48, 785-96.

Accuracy of a AMES consensus model as function of two Distances to Models

HelmholtzZentrum münchen

Accuracy=CORRECT/ALL

German Research Center for Environmental Health

Averaged ranking of DMs according to the percentage of compounds with 90% accuracy for training and test sets.

Distance to model	Average rank - training set	Average rank – test set
CONS-STD-QUAL-PROB	2.17	1.83
CONCORDANCE	1.62	2.1
CONS-STD-PROB	3.43	3.05
CONS-STD-QUAL	3.67	4.9
ASNN-STD-PROB	6.52	5.48
CONS-STD	4.83	5.6
CLASS-LAG	7.1	6.24
ASNN-STD	8.14	7.67
AD_MEAN1*	10.71	9.07
CORREL	9.26	10.26
AD_MEAN2*	9.71	10.86
LEVERAGE*	10.83	10.95

CONCORDANCE is the number of models that give the same prediction, as the current model does

Accuracy of different AMES model as function of a Distance to Models

Percent of compounds

HelmholtzZentrum münchen

Multi-task learning

HelmholtzZentrum münchen

German Research Center for Environmental Health

Multi-task learning: unequal number of data

Problem:

- prediction of tissue-air partition coefficients
- small datasets 30-100 molecules (human & rat data)

HelmholtzZentrum münchen German Research Center for Environmental Health

Varnek, et al, JCIM, 2009, 49(1):133-144.

Multi-task learning can improve models for small sets

Problem:

- prediction of tissue-air partition coefficients
- small datasets 30-100 molecules (human & rat data)

Results:

simultaneous prediction of several properties increased the accuracy of models

Human data

HelmholtzZentrum münchen German Research Center for Environmental Health

Varnek, et al, JCIM, 2009, 49(1):133-144.

ADMETox *in silico* challenges

ADMETox models should allows navigation in space of molecules with a confidence and:

- \checkmark should reliably estimate which compounds can/can't be reliably predicted.
- \checkmark provide experimental design and to minimize costs of new measurements.
- \checkmark be easily interpretable for chemists

HelmholtzZentrum münchen German Research Center for Environmental Health

Online CHEmical Modeling environment (OCHEM)

http://ochem.eu

Motivation

Properties of molecules

- Data are lost after publication of an article
- The original sources of data are difficult to track
- The conditions of experiments are frequently not provided
- The conversion between different units is error prone
- Current databases do not allow community correction of errors
- The tracking of changes (by users) is required

Models

- Most published models are never used
- Implementation can be as difficult as new model development
- Different implementations can produce different results*

Database schema

Simplified overview

vidences			Properties				
	- Ing/ICCE0 1) - 20	2 log (mmol/L) Temperature = 25.0	log(IGC50-1)	(concentration)	1093 records		
	- 10g(16C50-1) - 2.0	-iog (mmore) - remperatore - 20.0	LogPsuv	(dimensionless) 21 records		
	Combinatorial QSAR mode	eling of chemical toxicants tested aga	LogPsuv(ion)	(dimensionless	a) 21 records		
	N: 445 Journal of chemical inform	ation and modeling 2008: 48 (4) 766-84	LogPl	(dimensionless) 35 records		
	2579-22-8 , phenylpropargyl al	dehyde midnighter / itetko	Condition	S	ionless)		
Malagulaa	Names	Names		(temperature)			
Molecules				(concentration)			
	D ("ace.		Concentration	(concentration)			
95X 9		Articles		Units log(mmol/L)	(concentration)		
j j	~~ I	Spink, DC.Spink, BC.Zhuo, X.Hussain, MM.Gierthy, JF.Ding, X; NADPH- and hydroperoxide-supported 17beta-estradioi	hydroxylation catalyzed by	-log(mg/l)	(concentration)		
'II'		a variant form (432L, 453S) of human cytochrome P450 The Journal of steroid biochemistry and molecular biology 2000; 74 (1	181. -2) 11-8 Distant - Articulty 01382	nM	(concentration)		
	J Y	Zhang, LiZhu, H.Opres, TLGolbraikh, A.Tropsha, A; OSAR modeling of the blood-brain betrier cermeability fi	or duena omanic	-log (mmol/L)	(concentration)		
	XI	compounds. Phermaceutical research 2008; 25 (8) 1902-14	DOI - Butthed - ArticlelD: Q1577				
	7 3	Zhu, H;Tropsha, A;Fourchea, D;Varriek, A;Papa, E:Gramatica, P;Ober Combinatorial QSAR modeling of chemical toxicants tes pyrtformis. Journal of chemical information and modeling 2008. 48 (4) 766-64	g, T.Dao, P.Cherkasov, A.Tetko, IV; ted against Tetrahymena				

HelmholtzZentrum münchen

German Research Center for Environmental Health

Data structure: behind the scene

HelmholtzZentrum münchen

Acknowledgements

Funding

GO-Bio BMBF <u>http://qspr.eu</u> Germany-Ukraine grant UKR 08/006 FP7 Marie Curie ITN ECO <u>http://eco-itn.eu</u> FP7 CADASTER <u>http://www.cadaster.eu</u> My group Iurii Sushko Sergii Novotarskyi Anil K. Pandey Robert Körner Stefan Brandmaier Matthias Rupp Vijyant Srivastava Wolfram Teetz

Thanks to:Dr. G. Poda (Pfizer)Dr. C. Ostermann (Nycomed)Dr. C. Höfer (DMPKore)Prof. A. Tropsha (NC, USA)Prof. T. Oprea (New Mexico, USA)Prof. A. Varnek (Strasbourg, France)Prof. R. Mannhold (Düsseldorf, Germany)Prof. R. Todeschini (Milano, Italy)+all coauthors of AMES+many other colleagues

Ideen zünde

HelmholtzZentrum münchen

German Research Center for Environmental Health

Interested in Short-Term stays (3-12 months)? Apply!!!

http://www.eco-itn.eu

