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Helmholtz Zentrum München statistics 

•  Previous name (before 2008): GSF (Forschungszentrum für Umwelt und 
Gesundheit GmbH) 

•  Part of Helmholtz Network (2.35 Milliards Euro, 26500 people, 15 centers) 

•  Leading center for Environmental Health in Germany 

•  25 institutes (1797 people, ca 700 scientists & 300 PhD students)* 

•  70 contracts with EU 

•  Strong IPR and management support 

•  Institute for Bioinformatics & Systems Biology 

!  50 peoples, strong expertise in in silico data analysis, machine learning 
methods, software development, data dissemination (Web, Internet) 

*January 2008 
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•  AD for qualitative models – AMES test 

Data integration 
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Conclusions 



Pharma R&D Cost and Productivity:  
Fewer drugs, more expenditure"

Approved drug 

2008 – 24(3*); 2009 – 25(6*) 

*Biological license applications 



Potential ADME/T market (US $ billions)1"

 ADME ($1.5) In vivo 

Toxicology 

($1.3) 

In vitro 

Toxicology 

($0.2)

1) Razvi, E.S.  Drug and Market Development (2003).  
2) http://www.researchandmarkets.com/reports/c84850 

It will grow up to US$ 4.4 billion up to 20122 



Target Discovery 
Lead 
Discovery 

Lead Optimisation 
ADME/T 

Lead Profiling 
ADME/T 

Clinics Approval 

1.000.000 Cpds <5000 Cpds < 500 Cpds < 5 Cpds 

1 drug 
Up to 15 Years: 

In vitro and in vivo ADME/T property determination: 
Millions of screens for solubility, stability, absorption, metabolism, transport, reactive 
products, drug interactions, etc etc 

Preclinics Costs: > $300m PER COMPOUND to reach approval 

Pharma R&D: Cost and Productivity issues 
Compound numbers 

Courtesy from Dr. Höfer 



ADME/T 

Absorption 

 enters organism (by oral 
administration) 

Distribution 

 distributed between blood/
plasma/tissues (e.g. brain) 

Metabolism 

 bio-converting 

Elimination 

 mechanisms and pathways for 
excretion of drugs 

 Toxicity 

 undesired interactions of drug or 
its metabolites 

Size, lipophilicity, solubility, ionization, 
permeability, active transport  

Affinity to different tissues, permeability, 
active transport 

Affinity to different enzymes 

Active transport, size, lipophilicity, 
ionization, permeability (also for 
metabolites) 

Presence of toxicological 
pharmacophores, liophilicity  



Interplay of physico-chemical properties with 
in vivo pharmacological activities/data  

Wang & Shkolnik, Chem. & Biodiversity, 2009, 6, 1887. 



Interest in Phys-Chem properties 

Wang & Shkolnik, Chem. & Biodiversity, 2009, 6, 1887. 



Number of molecules processed at the Abbot site through the various 
algorithms available on the property calculation web page 

Y. C. Martin, QSAR Comb. Sci., 2006, 25, 1192. 



Properties Used to Define Drug-Likeness 

Property Drugs CNS-Drugs Leads Fragments 

MW <500 <450 <400 <300 

logP <5 0-4 <4 <3 

HA <10 <8 <3 

HD <5 <4 <3 

logD7.4 1-3 1-4 

PSA <140 <80 <120 <90 

van de Waterbeemd, Chem. Biodiver. 2009, 1760. 



Profiling of chemical compounds (Optibrium Ltd) 

Segal et al, Chem. Biodiver., 2009, 6, 2144.  



Profiling of chemical compounds  (Optibrium Ltd) 

Segal et al, Chem. Biodiver., 2009, 6, 2144.  



ADMET parameters 

Absorption 
Caco-2 (colorectal carcinoma cells)  
MDCK (Madin-Darby Canin Kidney) 
PAMPA (parallel artificial membrane 
permeability assay) 
Human Intestinal Absorption 
%FA (% of absorbed drug mass) 
Active transporters (P-glycoprotein, 
multi drug resistance protein – efflux, 
peptide, amino-acid transporters – 
absorption) 

Metabolism 
CYP450 
Aldehyde/Alcohol dehydrogenases 
Hydrolases, oxidases, esterases 
Microsomes, hepatocytes 
Genetically modified cell lines to 
express single CYP450 

Distribution 
BBB (Blood-Brain Barrier) 
PPB (Plasma protein Binding) 
HSA (Human Serine Albumin) binding 
Tissue partitioning 
Volume of distribution=dose/C0 (C0 is 
initial concentration of a drug in 
plasma) 

Elimination 
Route of elimination (renal, liver (bile-
>faeces, metabolism) 

Toxicity 
AMES test 
DDI (inhibition/activation of CYP450)
hERG (human ether-a-go-go-related 
gene) potassium channel inhibition 
Toxicity alerts 



Physico-chemical properties 

In vitro:      

logP       

logD 

Solubility in water 

Solubility in DMSO 

pKa 

Solubility in simulated intestinal fluid 



Absorption: 

In vitro: 

CaCo-2 

MDCK 

PAMPA 

In vivo: 

%FA 



Distribution: 

In vitro: 

PPB 

HSA 

BBB 

In vivo: 

BBB – animal models 

Tissue partitioning 



Metabolism: 

In vitro: 

CYP450 

Genetically engineered cell 
lines to study individual CYP  

Microsomes 

Hepatocytes 

In vivo: 

MS analysis 



Toxicity 

In vitro: 

AMES mutagenicity 

hERG toxicity 

In vivo: 

Animal models (LD50) 



ADMETox properties 

Physico-chemical 

Lipophilicity (logP/logD) 

•  ~ 20k (>100k) 

Aqueous solubility 

•  ~ 10k (~100k)  

pKa 

•  ~ 10k (~100k ?) 

Solubility in DMSO 

•  ~1k (>100k) 

Biological properties 

%FA (Fraction Absorbed) ~1k 

Blood-Brain barrier ~1k 

CYP450 affinities ~10k 

Transporters (PgP) ~10k 

Ion channels (hERG) ~10k 

Microsomes ~100k 

Hepatocytes ~10k 

VD ~300 

Available sources: WOMBAT, Symyx, CHeMBL, PHYSPROP, ChemSpider, OCHEM 



Additional readings: 

In Silico ADME Prediction: 
Data, Models, Facts and 
Myths, Lombardo, F.; Gifford, 
E.; Shalaeva, M.Y. Mini 
Reviews in Medicinal 
Chemistry, 2003, 3, 861-875 

Comprehensive Medicinal 
Chemistry II: In silico tools in 
ADMET; Testa, B., van de 
Waterbeemd, H., Eds.; 
Elsevier: 2006; Vol. 5.  

Chemistry & Biodiversity, vol.
6, 2009. 



What are the goals of modeling? 

Decrease number of experimental measurements by substitution of them with 
computational predictions. 

This can be achieved when computational accuracy of models is similar (or 
better!) to that of experimental measurements. 

Can we achieve it? 



Kozma Prutkov 

"One can not embrace the unembraceable.”  

Possible: 1060 - 10100 molecules theoretically exist  

Achievable: 1020 - 1024 can be synthesized now 
by companies (weight of the Moon is ca 1023 kg) 

Available: 2*107 molecules are on the market 

Measured: 102 - 105 molecules with ADME/T data 

Problem: To predict ADME/T properties of just molecules 
on the market we must extrapolate data from one to 
1,000 - 100,000  molecules! 

 1080 atoms in the Universe 



Current dogma about prediction of physico-
chemical properties 

•  Prediction of physico-chemical properties, in 
particular log P, is simple 

•  There is no need to measure them 

• We have enough number of good computational 
methods 

Is this true? 



Statistics of logP benchmarking 

Mannhold et al, J. Pharm. Sci., 2009, 98, 861-893. 



rank I – high accuracy predictions, 
 RMSE ~ best model  

rank II –  good predictions, 
 RMSE<AAM  

rank III – low accuracy predictions, 
 RMSE ! AAM 

AAM =  base (“no model”) model, 
R2=0, it used just one logP value as 
predicted value for all 95809 or 882 
molecules, respectively. 

Performance of algorithms for the public dataset 
Star set (N = 223) Non-Star set (N = 43) 

% within error range % within error range Method 
 RMSE rank <0.5 0.5-1 >1 RMSE rank <0.5 0.5-1 >1 
AB/LogP 0.41 I 84 12 4 1.00 I 42 23 35 
S+logP 0.45 I 76 22 3 0.87 I 40 35 26 
ACD/logP 0.50 I 75 17 7 1.00 I 44 33 23 
Consensus log P 0.50 I 74 18 8 0.80 I 47 28 26 
CLOGP 0.52 II 74 20 6 0.91 I 47 28 26 
VLOGP OPS 0.52 II 64 21 7 1.07 I 33 28 26 
ALOGPS 0.53 II 71 23 6 0.82 I 42 30 28 
MiLogP 0.57 II 69 22 9 0.86 I 49 30 21 
XLOGP 0.62 II 60 30 10 0.89 I 47 23 30 
KowWIN 0.64 II 68 21 11 1.05 I 40 30 30 
CSlogP 0.65 II 66 22 12 0.93 I 58 19 23 
ALOGP (Dragon) 0.69 II 60 25 16 0.92 I 28 40 33 
MolLogP 0.69 II 61 25 14 0.93 I 40 35 26 
ALOGP98 0.70 II 61 26 13 1.00 I 30 37 33 
OsirisP 0.71 II 59 26 16 0.94 I 42 26 33 
VLOGP 0.72 II 65 22 14 1.13 I 40 28 33 
TLOGP 0.74 II 67 16 13 1.12 I 30 37 30 
ABSOLV 0.75 II 53 30 17 1.02 I 49 28 23 
QikProp 0.77 II 53 30 17 1.24 II 40 26 35 
QuantlogP 0.80 II 47 30 22 1.17 II 35 26 40 
SLIPPER-2002 0.80 II 62 22 15 1.16 II 35 23 42 
COSMOFrag 0.84 II 48 26 19 1.23 II 26 40 33 
XLOGP2 0.87 II 57 22 20 1.16 II 35 23 42 
QLOGP 0.96 II 48 26 25 1.42 II 21 26 53 
VEGA 1.04 II 47 27 26 1.24 II 28 30 42 
CLIP 1.05 II 41 25 30 1.54 III 33 9 49 
LSER 1.07 II 44 26 30 1.26 II 35 16 49 
MLOGP (Sim+) 1.26 II 38 30 33 1.56 III 26 28 47 
NC+NHET 1.35 III 29 26 45 1.71 III 19 16 65 
SPARC 1.36 III 45 22 32 1.70 III 28 21 49 
MLOGP(Dragon) 1.52 III 39 26 35 2.45 III 23 30 47 
LSER UFZ 1.60 III 36 23 41 2.79 III 19 12 67 
AAM 1.62 III 22 24 53 2.10 III 19 28 53 
VLOGP-NOPS 1.76 III 1 1 7 1.39 III 7 0 7 
HINT 1.80 III 34 22 44 2.72 III 30 5 65 
GBLOGP 1.98 III 32 26 42 1.75 III 19 16 65 

 



•  Benchmarking was done by Pfizer 
and Nycomed – no data were 
available to participants  

•  Our ALOGPS algorithm was top-
ranked (according to the lowest 
RMSE errors) 

•  Several methods performed 
worse than making no prediction,  

Mannhold, R. et al, J. Pharm. Sci., 2009, 98(3), 861-893. 

AAM  base (“no model”) model, R2=0, 
it used just one logP value as 
predicted value for all 95809 or 882 
molecules, respectively. 

Our methodology is top-ranked in a recent benchmarking 



ALOGPS decreases errors about twice using local 
corrections for N=95809 in house Pfizer molecules 

ca 30 minutes of calculations on a notebook! 

RMSE=1.02 RMSE=0.59 

ALOGPS Blind prediction ALOGPS LIBRARY 

Tetko et al, QSAR Comb. Sci., 2009, 28, 845-9. 



The descriptor space challenge 

We need to know the target property and select correct descriptors! 



Property-based space similarity illustration 

Do they agree in their votes (STD)? 
Do they have the same pattern of votes (CORREL)?  



Associative Neural Network Property-Based DMs 
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CORREL - correlation 
between vectors of 
predictions 

STD - standard deviation 
of ensemble predictions 

Tetko et al, DDT, 2006, 11, 700-7. 



Illustration of local correction using 
nearest neighbors 

Real activity 

Predicted activity 



ALOGPS decreases errors about twice using local 
corrections for N=95809 in house Pfizer molecules 

ca 30 minutes of calculations on a notebook! 

RMSE=1.02 RMSE=0.59 

ALOGPS Blind prediction ALOGPS LIBRARY 

Tetko et al, QSAR Comb. Sci., 2009, 28, 845-9. 



Illustration of local correction using 
nearest neighbors 

Real activity 

Predicted activity 



Tetko et al, Chemistry & Biodiversity, 2009, 6(11), 197-202. 

ALOGPS distinguishes reliable vs. non-reliable predictions 
in property-based space (CORREL)  

Non-reliable  Reliable 

CORREL identifies  
60% of molecules  
predicted  
with average accuracy of  
0.3 log units 



The use of ALOGPS advanced features dramatically 
increase prediction accuracy of the predictions 

The experimental measurements accuracy was achieved  for >60,000 Pfizer compounds.  

Tetko et al, Chem. & Biodivers., 2009, 6(11), 197-202. 



Estimation of toxicity against T. pyriformis 

The overall goal is to predict and to assess the reliability of predictions 
toxicity against T. pyriformis for chemicals directly from their structure. 

Prof. T.W. Schultz T. pyriformis  

Dataset: 1093 molecules 

Zhu et al, J. Chem. Inf. Model, 2008, 48, 766-84.  



Analyzed QSARs (Quantitative Structure Activity 
Relationship) and  distances to models (DM) 

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.  



Overview of analyzed distances to models (DMs) 

EUCLID  

              EUm=                 k is number of nearest 
                                               neighbors, m index of 
                                               model 

TANIMOTO  

xa,i and xb,i are fragment counts 

LEVERAGE 

                LEVERAGE=xT(XTX)-1x 

PLSEU (DModX) 

Error in approximation (restoration) of the 
vector of input variables from the latent 
variables and PLS weights. 

STD 

          yi is value calculated with model i and    is average 
value 

CORREL 

CORREL(a) =maxj CORREL(a,j)=R2(Ya
calc,Yj

calc) 

Ya=(y1,…,yN) is vector of predictions of molecule i 



Property-based, ASNN model: DM does work! 

STD 

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.  



Descriptor space, ASNN model: DM does not work 

Mahalanobis (Leverage) 

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.  



Ranking of Distance to Models (DM) 

*Ordered by performance of the DMs on the validation dataset 

Tetko et al, J. Chem. Inf. Model, 2008, 48, 1733-46.  



Analysis of DMs for a linear model  

Log(IGC50
-1)= 

-18(±0.7) +0.065(±0.002)AMR-0.50
(0.04)O56-0.30(0.03)O58 

-0.29(0.02)nHAcc+0.046(0.005)
H-046+16(0.7)Me 

The results of DM performance 
are consistent across different 
models 

Tetko et al, J Chem Inf Model, 2008, 48(9):1733-46.  



Classification task distance measures 



Binary classification 

PROB=0.999 

PROB=0.539 

PROB=0.841 

PROB=0.841 



Prediction of Ames Mutagenicity set 

http://ml.cs.tu-berlin.de/toxbenchmark 

Toxicity against Salmonella typhimurium 

Training dataset: 4361 molecules 

“Blind” test dataset: 2181 molecules 

54% with mutagenic effect 

Large international collaboration effort of 
>10 labs from USA, Canada, EU, Russia, 
the Ukraine & China (see also poster P-22) 

1Schwaighofer et al, JCIM, 2008, 48, 785-96.  

Prof. Bruce N. Ames 
Inventor of the test (1975) 



Accuracy of a AMES consensus model as 
function of two Distances to Models 

Accuracy=CORRECT/ALL 



Averaged ranking of DMs according to the percentage of 
compounds with 90% accuracy for training and test sets. 

Distance to model Average rank - training set Average rank – test set 

CONS-STD-QUAL-PROB 2.17 1.83 

CONCORDANCE 1.62 2.1 

CONS-STD-PROB 3.43 3.05 

CONS-STD-QUAL 3.67 4.9 

ASNN-STD-PROB 6.52 5.48 

CONS-STD 4.83 5.6 

CLASS-LAG 7.1 6.24 

ASNN-STD 8.14 7.67 

AD_MEAN1* 10.71 9.07 

CORREL 9.26 10.26 

AD_MEAN2* 9.71 10.86 

LEVERAGE* 10.83 10.95 

CONCORDANCE is the number of models that give the same prediction, as the current model does 



Accuracy of different AMES model as function 
of a Distance to Models 



Multi-task learning 

   



Multi-task learning: unequal number of data 

Problem: 

•  prediction of tissue-air partition 
coefficients  
•  small datasets 30-100 molecules 
(human & rat data) 

Varnek, et al, JCIM, 2009, 49(1):133-144. 



Multi-task learning can improve models for 
small sets 

Problem: 

•  prediction of tissue-air partition 
coefficients  
•  small datasets 30-100 molecules 
(human & rat data) 

Results: 

simultaneous prediction of several 
properties increased the accuracy of 
models 

Varnek, et al, JCIM, 2009, 49(1):133-144. 



ADMETox in silico challenges 

ADMETox models should allows navigation in space of molecules with a confidence and: 

"  should reliably estimate which compounds can/can’t be reliably predicted. 

"  provide experimental design and to minimize costs of new measurements. 

"  be easily interpretable for chemists 

reliable predictions 

N

O O

new measurement 

N O

O OHN O

O

new series to predict 



Online CHEmical Modeling environment (OCHEM) 

http://ochem.eu 



Motivation 

Properties of molecules 

•  Data are lost after publication of an article 

•  The original sources of data are difficult to track 

•  The conditions of experiments are frequently not provided 

•  The conversion between different units is error prone 

•  Current databases do not allow community correction of errors 

•  The tracking of changes (by users) is required 

Models 

•  Most published models are never used 

•  Implementation can be as difficult as new model development 

•  Different implementations can produce different results* 



Molecules 

Articles 

Conditions 

Properties 

Units 

Users 

Database schema 
Simplified overview 

Evidences 

Names 



Data structure: behind the scene 
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Interested in Short-Term stays (3-12 months)? 
Apply!!! 

http://www.eco-itn.eu 


