1. Home
  2. > CONFERENCES
  3. > 2017
  4. > Formation continue en Chémoinformatique / Short courses in Chemoinformatics

Formation continue en Chémoinformatique / Short courses in Chemoinformatics

Formation Continue - Initiation à la Chémoinformatique: Bases de données et modèles QSAR


Généralités

Catalogue de formation, page 24

Dates: 15 et 16 Mai 2017.

Code: 1179 Référence: SGI17-0301

Renseignements et inscriptions :

Sandra GRISINELLI

Tél.: 03 68 85 49 98 (Sauf le mercredi)

Fax : 03 68 85 49 29

s.grisinelli unistra.fr

Frais de participation :

825 euros Repas de midi pris en charge par les organisateurs.

Personnes concernées

Chimistes (Bac 3 ou plus), techniciens supérieurs (DUT) ayant une expérience en gestion des bases de données, logiciels de modélisation, souhaitant élargir leur domaine de compétence.


Objectifs

La modélisation QSAR (Quantitative Structure Activity Relationship) en Chémoinformatique, vise à construire des modèles statistiques prédictifs reliant la structure chimique de composés à leurs propriétés physico-chimiques ou biologiques. Ces modèles recherchent et exploitent des régularités dans les données stockées dans les bases de données en chimie. Il importe donc de maîtriser la façon dont on stocke et recherche de l’information sur des molécules. Les approches Chémoinformatiques sont très utilisées dans l’industrie chimique pour modéliser les propriétés physico-chimiques de molécules et des matériaux, ainsi que dans l’industrie pharmaceutique pour effectuer des criblages virtuels ou prédire des propriétés pharmacodynamiques et pharmacocinétiques.


Pré-requis

Connaissances de base en informatique.


Programme

Systèmes de gestion des bases de données en chimie. Bases de données et sources d’information en Chimie (SciFinder, PubChem, ChEMBL, ChemSpider). Recherche structurale, sous-structurale, superstructurale et par similarité. Représentation de structures chimiques par ordinateur : chaînes de caractères (SMILES, SMARTS, INCHI), chaînes de bits (fingerprints), graphes moléculaires (table de connectivité, matrice de distance, ...). Formats d’échange : MOL, RXN, SDF, RDF.

Descripteurs, espace chimique. Similarité et diversité de composés et de réactions chimiques. Conception de chimiothèque. Méthodes de fouille de données en chimie : MLR, régression logistique, réseaux neuronaux, SVM, Naïve Bayes, arbres de décision. Modèles QSAR de classification et de régression : leur obtention et validation. Domaine d’applicabilité de modèles. Criblage virtuel basées sur les ligands.


Méthodes pédagogiques

L’enseignement se déroulera au sein de la Faculté de Chimie, dans une salle réservée à cette formation, équipée de 21 PC LINUX, d’une imprimante et d’un vidéo projecteur.
Les cours seront délivrés en Anglais et Français.

Logiciels utilisés dans les cours : ChemAxon, MOE, ISIDA, WEKA.


Nature et sanction de la formation

Cette formation constitue une action d’adaptation et de développement des compétences. Elle donne lieu à la délivrance d’une attestation de participation.
Une évaluation en fin de formation permet de mesurer la satisfaction des stagiaires ainsi que l’atteinte des objectifs de formation (connaissances, compétences, adhésion, confiance) selon les niveaux 1 et 2 du modèle d’évaluation de l’efficacité des formations Kirkpatrick.


Intervenants

  • Alexandre Varnek, Professeur à l’Université de Strasbourg.
  • Gilles Marcou, Maître de Conférences à l’Université de Strasbourg.
  • Dragos Horvath, Directeur de Recherche au CNRS.

Responsable scientifique

M. Gilles MARCOU, Maître de Conférences, Faculté de Chimie.

Courriel : g.marcou unistra.fr


Short Courses in Chemoinformatics: Databases and QSAR models


Informations

Course catalog, page 24

Dates: 15 et 16 Mai 2017.

Code: 1179 Reference: SGI17-0301

Informations and registration :

Sandra GRISINELLI

Tél.: 03 68 85 49 98 (Except on Wednesday)

Fax : 03 68 85 49 29

s.grisinelli unistra.fr

Registration fees :

825 euros These fees include teaching and lunch.

For whom ?

Chemists (Bachelor’s degree or better), technicians having experience in database management, modelisation software, willing to broaden their skills.


Purpose

QSAR modelling (Quantitative Structure Activity Relationship) in Chemoinformatics aims to build predictive statistical models linking the chemical structure of compounds to their physico-chemical or biological properties. These models look for patterns in data stored in chemical databases and use them. Thus, it is important to master the way of storing and using informations contained in molecules. Chemoinformatics approaches are widely used in chemical industry to model physico-chemical properties of molecules and materials, as well as in the pharmaceutical industry to perform virtual screening or to predict pharmacodynamic and pharmacokinetic properties.


Requirements

Basic informatics skills.


Program

Databases management systems in chemistry.
Databases and information sources in chemistry (SciFinder, PubChem, ChEMBL, ChemSpider).
Structural search, sub-structural, superstructural and similarity searches.
In Silico representations of chemical structures : strings (SMILES, SMARTS, INCHI), bit strings (fingerprints), molecular graphs (connectivity table, distance matrix, ...).
Data exchange formats : MOL, RXN, SDF, RDF.

Descriptors, chemical space.
Similarity and diversity of compounds and chemical reactions.
Design of chemical databases.
Data mining methods for chemistry data : MLR, logistic regression, neural networks, SVM, Naïve Bayes, decision trees.
QSAR models for classification and regression : acquisition and validation.
Applicability domain of models.
Ligand-based virtual screening.


Teaching methods

The courses will take place in the Faculté de Chimie, in a computer classroom dedicated to these courses, equipped with 21 PC LINUX, a printer and a video projector.
Lectures will be delivered in English or in French depending on the audience.

Softwares used in the lectures : ChemAxon, MOE, ISIDA, WEKA.


Nature of the course and training approval

This training is an adaptation action and skills development course. A participation certificate will be delivered. At the end of the training, a test will measure the trainees’ satisfaction and achievement of objectives (knowledge, skills, accession, trust) according to levels 1 and 2 of the Kirkpatrick training efficacy assessment template.


Speakers

  • Alexandre Varnek, Professor at Strasbourg University.
  • Gilles Marcou, Senior Lecturer at Strasbourg University.
  • Dragos Horvath, Research Supervisor at the CNRS.

Scientific Leader

M. Gilles MARCOU, Senior Lecturer, Faculté de Chimie.

Email : g.marcou unistra.fr


Formation Continue 1 (2017) / Short courses 1 (2017)


Formation Continue - Initiation à la Chémoinformatique 1 : Bases de données et modèles QSAR (version française)
Short Courses in Chemoinformatics 1 : Databases and QSAR models (english version)


Formation Continue - Initiation à la Chémoinformatique: Structure 3D et Criblage virtuel


Généralités

Catalogue de formation, page 25.

Dates: 18 et 19 Mai 2017.

Code: 1180 Référence: SGI17-0302

Renseignements et inscriptions :

Sandra GRISINELLI

Tél.: 03 68 85 49 98 (Sauf le mercredi)

Fax : 03 68 85 49 29

s.grisinelli unistra.fr

Frais de participation :

825 euros Repas de midi pris en charge par les organisateurs.

Personnes concernées

Chimistes (Bac 3 ou plus), techniciens supérieurs (DUT) ayant une expérience en gestion des bases de données, logiciels de modélisation, souhaitant élargir leur domaine de compétence.


Objectifs

La Chémoinformatique fait amplement usage de modèles pour prédire l’activité biologique d’une molécule à partir des interactions non covalentes qu’elle établit avec sa cible protéique spécifique. Toutefois, ces modèles sont simplifiés afin de traiter de très grands nombres d’hypothèses. Ceci se traduit par l’utilisation du concept de pharmacophore et celui de score pour les logiciels de docking. Ces approches sont d’intérêt dans l’industrie pharmaceutique pour la recherche de touches par criblage virtuel de chimiothèques ou pour optimiser une tête de série.


Pré-requis

Connaissances de base en informatique.


Programme

La structure 3D des molécules : Lecture de complexes entre une molécule bioactive et sa protéine cible ou comment rationaliser le lien entre similarité moléculaire et similarité d’activité ; Recherche dans les bases de données structurales (ProteinDataBank, Cambridge Structure Databank) ; Flexibilité moléculaire et échantillonnage conformationnel.

Pharmacophore : identification dans une série de molécules actives des déterminants moléculaires pour la liaison à la protéine cible.

Docking : prédiction de la géométrie d’une molécule active dans le site de liaison de sa protéine cible.

Criblage virtuel d’une chimiothèque par les approches pharmacophore et docking : importance des scores et du traitement chémoinformatique des données. Bilan et discussion, ouverture sur d’autres méthodes (comparaison de forme, comparaison de sites de protéines, prédiction de droguabilité ).


Méthodes pédagogiques

L’enseignement se déroulera au sein de la Faculté de Chimie, dans une salle réservée à cette formation, équipée de 21 PC LINUX, d’une imprimante et d’un vidéo projecteur.

Les cours seront délivrés en Anglais et Français.

Logiciels utilisés dans les cours : Logiciels commerciaux (Benchware3DExplorer, MOE, ROCS, FlexX, Gold, LigandScout. Liste non contractuelle sous réserve de modifications).


Nature et sanction de la formation

Cette formation constitue une action d’adaptation et de développement des compétences. Elle donne lieu à la délivrance d’une attestation de participation.
Une évaluation en fin de formation permet de mesurer la satisfaction des stagiaires ainsi que l’atteinte des objectifs de formation (connaissances, compétences, adhésion, confiance) selon les niveaux 1 et 2 du modèle d’évaluation de l’efficacité des formations Kirkpatrick.


Intervenants

  • Esther Kellenberger, Professeur à l’Université de Strasbourg.
  • Gilles Marcou, Maître de Conférences à l’Université de Strasbourg.
  • Dragos Horvath, Directeur de Recherche au CNRS.

Responsable scientifique

M. Gilles MARCOU, Maître de Conférences, Faculté de Chimie.

Courriel : g.marcou unistra.fr


Formation Continue 2 (2017) / Short courses 2 (2017)


Formation Continue - Initiation à la Chémoinformatique 2 : Structure 3D et Criblage virtuel (version française)
Short Courses in Chemoinformatics 2 : 3D structure and Virtual screening (english version)


Short Courses in Chemoinformatics : 3D structure and Virtual Screening


Informations

Course catalog, page 25.

Dates: 18 et 19 Mai 2017.

Code: 1180 Référence: SGI17-0302

Informations and registration :

Sandra GRISINELLI

Tél.: 03 68 85 49 98 (Except on Wednesday)

Fax : 03 68 85 49 29

s.grisinelli unistra.fr

Registration fees :

825 euros These fees include teaching and lunch.

For whom ?

Chemists (Bachelor’s degree or better), technicians having experience in database management, modelisation software, willing to broaden their skills.


Purpose

Chemoinformatics widely uses models to predict the biological activity of a molecule, based on its non-covalent interactions with its specific proteic target. However, these models are simplified in order to deal with a large number of hypothesis. This is reflected in the use of the pharmacophore and score concepts in docking softwares. These approaches are of high interest in pharmaceutical industry, in order to search for Hits with Virtual screening, or to optimize a Lead.


Requirements

Basic informatics skills.


Program

Proteins 3D structure : Reading of complexes between a bioactive molecule and its target protein, or - how to rationalize the link between molecular similarity and activity similarity ; Searches in structural databases (ProteinDataBank, Cambridge Structure Databank) ; Molecular flexibility and conformational sampling.

Pharmacophore : Identification, in a series of active molecules, of key molecular factors for binding with the target protein.

Docking : Prediction of an active molecule geometry in the active site of its target protein.

Virtual screening of a chemical database using pharmacophore and docking approaches : Importance of score and chemoinformatics data processing. Review and discussion, opening on other methods (shape comparison, proteins sites comparison, druggability prediction).


Teaching methods

The courses will take place in the Faculté de Chimie, in a computer classroom dedicated to these courses, equipped with 21 PC LINUX, a printer and a video projector.
Lectures will be delivered in English or in French depending on the audience.

Softwares used in the lectures : commercial software (Benchware3DExplorer, MOE, ROCS, FlexX, Gold, LigandScout. This list is non-contractual, subject to modifications).


Nature of the course and training approval

This training is an adaptation action and skills development course. A participation certificate will be delivered. At the end of the training, a test will measure the trainees’ satisfaction and achievement of objectives (knowledge, skills, accession, trust) according to levels 1 and 2 of the Kirkpatrick training efficacy assessment template.


Speakers

  • Esther Kellenberger, Professor at Strasbourg University.
  • Gilles Marcou, Senior Lecturer at Strasbourg University.
  • Dragos Horvath, Research Supervisor at the CNRS.

Scientific Leader

M. Gilles MARCOU, Senior Lecturer, Faculté de Chimie.

Email : g.marcou unistra.fr